File size: 1,676 Bytes
f222a51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
# This model can generate the solution to problem in [LeetCode](https://leetcode.com)
## The training data: [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/datasets/khaimaitien/leetcode_problem_solution)
## The base model: [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf)
You can find more information at: https://github.com/khaimt/coding_challenge_solver
The prompt template is:
``` python
prompt_str = (
f"[INST] Write code to solve the following coding problem that obeys"
f"the constraints and passes the example test cases."
f"Please wrap your code answer using ```:\n{input}\n[/INST]```python\n"
)
```
Where input is the problem in LeetCode, an example is: https://github.com/khaimt/coding_challenge_solver/blob/main/test_cases/problem1.txt
**Example for inference:**
```python
prompt_str = (
f"[INST] Write code to solve the following coding problem that obeys"
f"the constraints and passes the example test cases."
f"Please wrap your code answer using ```:\n{input}\n[/INST]```python\n"
)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", torch_dtype=torch.bfloat16)
token_ids = tokenizer([prompt_str], return_tensors="pt")["input_ids"]
token_ids = token_ids.to(model.device)
outputs = model.generate(input_ids=token_ids, max_new_tokens=1024, do_sample=True, temperature=0.0001)
all_token_ids = outputs[0].tolist()
ouput_token_ids = all_token_ids[token_ids.shape[-1] :]
output = tokenizer.decode(ouput_token_ids)
print("-------------Solution generated from Model---------")
print(output)
``` |