File size: 1,518 Bytes
76ee57c 3ffc0e2 76ee57c 2f1f377 76ee57c 2b05e1c 2f3cb15 25c0033 76ee57c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
language:
- ko
tags:
- generated_from_keras_callback
model-index:
- name: RoBERTa-large-Detection-P2G
results: []
---
# RoBERTa-large-Detection-P2G
์ด ๋ชจ๋ธ์ klue/roberta-large์ ๊ตญ๋ฆฝ ๊ตญ์ด์ ์ ๋ฌธ ๋ง๋ญ์น 5๋ง๊ฐ์ ๋ฌธ์ฅ์ 2021์ g2pK๋ก ํ๋ จ์์ผ G2P๋ ๋ฐ์ดํฐ๋ฅผ ํ์งํฉ๋๋ค.<br>
git : https://github.com/taemin6697<br>
## Usage
```python
from transformers import AutoTokenizer, RobertaForSequenceClassification
import torch
import numpy as np
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_dir = "kfkas/RoBERTa-large-Detection-G2P"
tokenizer = AutoTokenizer.from_pretrained('klue/roberta-large')
model = RobertaForSequenceClassification.from_pretrained(model_dir).to(device)
text = "์๋์ปค ํ๋์ํ ๋ํํฐ๋ฉ ํ์ฐ๋ฌ ์ด๋ฌ๋ฌ ์ด์์์ฅ ์ ๋ฌผ"
with torch.no_grad():
x = tokenizer(text, padding='max_length', truncation=True, return_tensors='pt', max_length=128)
y_pred = model(x["input_ids"].to(device))
logits = y_pred.logits
y_pred = logits.detach().cpu().numpy()
y = np.argmax(y_pred)
print(y)
#1
```
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: None
- training_precision: float16
### Training results
### Framework versions
- Transformers 4.22.1
- TensorFlow 2.10.0
- Datasets 2.5.1
- Tokenizers 0.12.1 |