|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import logging |
|
import os |
|
import json |
|
from tqdm import tqdm |
|
import pandas as pd |
|
import multiprocessing |
|
import time |
|
import torch |
|
|
|
|
|
def job(utt_list, parquet_file, utt2parquet_file, spk2parquet_file): |
|
start_time = time.time() |
|
data_list = [] |
|
for utt in tqdm(utt_list): |
|
data = open(utt2wav[utt], 'rb').read() |
|
data_list.append(data) |
|
wav_list = [utt2wav[utt] for utt in utt_list] |
|
text_list = [utt2text[utt] for utt in utt_list] |
|
spk_list = [utt2spk[utt] for utt in utt_list] |
|
uttembedding_list = [utt2embedding[utt] for utt in utt_list] |
|
spkembedding_list = [spk2embedding[utt2spk[utt]] for utt in utt_list] |
|
speech_token_list = [utt2speech_token[utt] for utt in utt_list] |
|
|
|
|
|
df = pd.DataFrame() |
|
df['utt'] = utt_list |
|
df['wav'] = wav_list |
|
df['audio_data'] = data_list |
|
df['text'] = text_list |
|
df['spk'] = spk_list |
|
df['utt_embedding'] = uttembedding_list |
|
df['spk_embedding'] = spkembedding_list |
|
df['speech_token'] = speech_token_list |
|
df.to_parquet(parquet_file) |
|
with open(utt2parquet_file, 'w') as f: |
|
json.dump({k: parquet_file for k in utt_list}, f, ensure_ascii=False, indent=2) |
|
with open(spk2parquet_file, 'w') as f: |
|
json.dump({k: parquet_file for k in list(set(spk_list))}, f, ensure_ascii=False, indent=2) |
|
logging.info('spend time {}'.format(time.time() - start_time)) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--num_utts_per_parquet', |
|
type=int, |
|
default=1000, |
|
help='num utts per parquet') |
|
parser.add_argument('--num_processes', |
|
type=int, |
|
default=1, |
|
help='num processes for make parquets') |
|
parser.add_argument('--src_dir', |
|
type=str) |
|
parser.add_argument('--des_dir', |
|
type=str) |
|
args = parser.parse_args() |
|
|
|
utt2wav, utt2text, utt2spk = {}, {}, {} |
|
with open('{}/wav.scp'.format(args.src_dir)) as f: |
|
for l in f: |
|
l = l.replace('\n', '').split() |
|
utt2wav[l[0]] = l[1] |
|
with open('{}/text'.format(args.src_dir)) as f: |
|
for l in f: |
|
l = l.replace('\n', '').split() |
|
utt2text[l[0]] = ' '.join(l[1:]) |
|
with open('{}/utt2spk'.format(args.src_dir)) as f: |
|
for l in f: |
|
l = l.replace('\n', '').split() |
|
utt2spk[l[0]] = l[1] |
|
utt2embedding = torch.load('{}/utt2embedding.pt'.format(args.src_dir)) |
|
spk2embedding = torch.load('{}/spk2embedding.pt'.format(args.src_dir)) |
|
utt2speech_token = torch.load('{}/utt2speech_token.pt'.format(args.src_dir)) |
|
utts = list(utt2wav.keys()) |
|
|
|
|
|
pool = multiprocessing.Pool(processes=args.num_processes) |
|
parquet_list, utt2parquet_list, spk2parquet_list = [], [], [] |
|
for i, j in enumerate(range(0, len(utts), args.num_utts_per_parquet)): |
|
parquet_file = os.path.join(args.des_dir, 'parquet_{:09d}.tar'.format(i)) |
|
utt2parquet_file = os.path.join(args.des_dir, 'utt2parquet_{:09d}.json'.format(i)) |
|
spk2parquet_file = os.path.join(args.des_dir, 'spk2parquet_{:09d}.json'.format(i)) |
|
parquet_list.append(parquet_file) |
|
utt2parquet_list.append(utt2parquet_file) |
|
spk2parquet_list.append(spk2parquet_file) |
|
pool.apply_async(job, (utts[j: j + args.num_utts_per_parquet], parquet_file, utt2parquet_file, spk2parquet_file)) |
|
pool.close() |
|
pool.join() |
|
|
|
with open('{}/data.list'.format(args.des_dir), 'w', encoding='utf8') as f1, \ |
|
open('{}/utt2data.list'.format(args.des_dir), 'w', encoding='utf8') as f2, \ |
|
open('{}/spk2data.list'.format(args.des_dir), 'w', encoding='utf8') as f3: |
|
for name in parquet_list: |
|
f1.write(name + '\n') |
|
for name in utt2parquet_list: |
|
f2.write(name + '\n') |
|
for name in spk2parquet_list: |
|
f3.write(name + '\n') |
|
|