|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
import logging |
|
import torch |
|
from tqdm import tqdm |
|
import onnxruntime |
|
import numpy as np |
|
import torchaudio |
|
import whisper |
|
|
|
|
|
def single_job(utt): |
|
audio, sample_rate = torchaudio.load(utt2wav[utt], backend='soundfile') |
|
if sample_rate != 16000: |
|
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio) |
|
|
|
if audio.shape[0] > 1: |
|
audio = audio.mean(dim=0, keepdim=True) |
|
if audio.shape[1] / 16000 > 30: |
|
logging.warning('do not support extract speech token for audio longer than 30s') |
|
speech_token = [] |
|
else: |
|
feat = whisper.log_mel_spectrogram(audio, n_mels=128) |
|
speech_token = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.detach().cpu().numpy(), |
|
ort_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist() |
|
return utt, speech_token |
|
|
|
|
|
def main(args): |
|
all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()] |
|
utt2speech_token = {} |
|
for future in tqdm(as_completed(all_task)): |
|
utt, speech_token = future.result() |
|
utt2speech_token[utt] = speech_token |
|
torch.save(utt2speech_token, '{}/utt2speech_token.pt'.format(args.dir)) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--dir", type=str) |
|
parser.add_argument("--onnx_path", type=str) |
|
parser.add_argument("--num_thread", type=int, default=8) |
|
args = parser.parse_args() |
|
|
|
utt2wav = {} |
|
with open('{}/wav.scp'.format(args.dir)) as f: |
|
for l in f: |
|
l = l.replace('\n', '').split() |
|
utt2wav[l[0]] = l[1] |
|
|
|
option = onnxruntime.SessionOptions() |
|
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL |
|
option.intra_op_num_threads = 1 |
|
providers = ["CUDAExecutionProvider"] |
|
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers) |
|
executor = ThreadPoolExecutor(max_workers=args.num_thread) |
|
|
|
main(args) |
|
|