|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
import onnxruntime |
|
import torch |
|
import torchaudio |
|
import torchaudio.compliance.kaldi as kaldi |
|
from tqdm import tqdm |
|
|
|
|
|
def single_job(utt): |
|
audio, sample_rate = torchaudio.load(utt2wav[utt]) |
|
if sample_rate != 16000: |
|
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio) |
|
feat = kaldi.fbank(audio, |
|
num_mel_bins=80, |
|
dither=0, |
|
sample_frequency=16000) |
|
feat = feat - feat.mean(dim=0, keepdim=True) |
|
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist() |
|
return utt, embedding |
|
|
|
|
|
def main(args): |
|
all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()] |
|
utt2embedding, spk2embedding = {}, {} |
|
for future in tqdm(as_completed(all_task)): |
|
utt, embedding = future.result() |
|
utt2embedding[utt] = embedding |
|
spk = utt2spk[utt] |
|
if spk not in spk2embedding: |
|
spk2embedding[spk] = [] |
|
spk2embedding[spk].append(embedding) |
|
for k, v in spk2embedding.items(): |
|
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist() |
|
torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir)) |
|
torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir)) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--dir", type=str) |
|
parser.add_argument("--onnx_path", type=str) |
|
parser.add_argument("--num_thread", type=int, default=8) |
|
args = parser.parse_args() |
|
|
|
utt2wav, utt2spk = {}, {} |
|
with open('{}/wav.scp'.format(args.dir)) as f: |
|
for l in f: |
|
l = l.replace('\n', '').split() |
|
utt2wav[l[0]] = l[1] |
|
with open('{}/utt2spk'.format(args.dir)) as f: |
|
for l in f: |
|
l = l.replace('\n', '').split() |
|
utt2spk[l[0]] = l[1] |
|
|
|
option = onnxruntime.SessionOptions() |
|
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL |
|
option.intra_op_num_threads = 1 |
|
providers = ["CPUExecutionProvider"] |
|
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers) |
|
executor = ThreadPoolExecutor(max_workers=args.num_thread) |
|
|
|
main(args) |
|
|