|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Encoder definition.""" |
|
from typing import Tuple |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from cosyvoice.transformer.convolution import ConvolutionModule |
|
from cosyvoice.transformer.encoder_layer import ConformerEncoderLayer |
|
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward |
|
from cosyvoice.utils.class_utils import ( |
|
COSYVOICE_EMB_CLASSES, |
|
COSYVOICE_SUBSAMPLE_CLASSES, |
|
COSYVOICE_ATTENTION_CLASSES, |
|
COSYVOICE_ACTIVATION_CLASSES, |
|
) |
|
from cosyvoice.utils.mask import make_pad_mask |
|
from cosyvoice.utils.mask import add_optional_chunk_mask |
|
|
|
|
|
class Upsample1D(nn.Module): |
|
"""A 1D upsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
use_conv_transpose (`bool`, default `False`): |
|
option to use a convolution transpose. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
""" |
|
|
|
def __init__(self, channels: int, out_channels: int, stride: int = 2): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels |
|
self.stride = stride |
|
|
|
self.conv = nn.Conv1d(self.channels, self.out_channels, stride * 2 + 1, stride=1, padding=0) |
|
|
|
def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor): |
|
outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest") |
|
outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0) |
|
outputs = self.conv(outputs) |
|
return outputs, input_lengths * self.stride |
|
|
|
|
|
class PreLookaheadLayer(nn.Module): |
|
def __init__(self, channels: int, pre_lookahead_len: int = 1): |
|
super().__init__() |
|
self.channels = channels |
|
self.pre_lookahead_len = pre_lookahead_len |
|
self.conv1 = nn.Conv1d( |
|
channels, channels, |
|
kernel_size=pre_lookahead_len + 1, |
|
stride=1, padding=0, |
|
) |
|
self.conv2 = nn.Conv1d( |
|
channels, channels, |
|
kernel_size=3, stride=1, padding=0, |
|
) |
|
|
|
def forward(self, inputs: torch.Tensor) -> torch.Tensor: |
|
""" |
|
inputs: (batch_size, seq_len, channels) |
|
""" |
|
outputs = inputs.transpose(1, 2).contiguous() |
|
|
|
outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0) |
|
outputs = F.leaky_relu(self.conv1(outputs)) |
|
|
|
outputs = F.pad(outputs, (2, 0), mode='constant', value=0.0) |
|
outputs = self.conv2(outputs) |
|
outputs = outputs.transpose(1, 2).contiguous() |
|
|
|
|
|
outputs = outputs + inputs |
|
return outputs |
|
|
|
|
|
class UpsampleConformerEncoder(torch.nn.Module): |
|
|
|
def __init__( |
|
self, |
|
input_size: int, |
|
output_size: int = 256, |
|
attention_heads: int = 4, |
|
linear_units: int = 2048, |
|
num_blocks: int = 6, |
|
dropout_rate: float = 0.1, |
|
positional_dropout_rate: float = 0.1, |
|
attention_dropout_rate: float = 0.0, |
|
input_layer: str = "conv2d", |
|
pos_enc_layer_type: str = "rel_pos", |
|
normalize_before: bool = True, |
|
static_chunk_size: int = 0, |
|
use_dynamic_chunk: bool = False, |
|
global_cmvn: torch.nn.Module = None, |
|
use_dynamic_left_chunk: bool = False, |
|
positionwise_conv_kernel_size: int = 1, |
|
macaron_style: bool = True, |
|
selfattention_layer_type: str = "rel_selfattn", |
|
activation_type: str = "swish", |
|
use_cnn_module: bool = True, |
|
cnn_module_kernel: int = 15, |
|
causal: bool = False, |
|
cnn_module_norm: str = "batch_norm", |
|
key_bias: bool = True, |
|
gradient_checkpointing: bool = False, |
|
): |
|
""" |
|
Args: |
|
input_size (int): input dim |
|
output_size (int): dimension of attention |
|
attention_heads (int): the number of heads of multi head attention |
|
linear_units (int): the hidden units number of position-wise feed |
|
forward |
|
num_blocks (int): the number of decoder blocks |
|
dropout_rate (float): dropout rate |
|
attention_dropout_rate (float): dropout rate in attention |
|
positional_dropout_rate (float): dropout rate after adding |
|
positional encoding |
|
input_layer (str): input layer type. |
|
optional [linear, conv2d, conv2d6, conv2d8] |
|
pos_enc_layer_type (str): Encoder positional encoding layer type. |
|
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos] |
|
normalize_before (bool): |
|
True: use layer_norm before each sub-block of a layer. |
|
False: use layer_norm after each sub-block of a layer. |
|
static_chunk_size (int): chunk size for static chunk training and |
|
decoding |
|
use_dynamic_chunk (bool): whether use dynamic chunk size for |
|
training or not, You can only use fixed chunk(chunk_size > 0) |
|
or dyanmic chunk size(use_dynamic_chunk = True) |
|
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module |
|
use_dynamic_left_chunk (bool): whether use dynamic left chunk in |
|
dynamic chunk training |
|
key_bias: whether use bias in attention.linear_k, False for whisper models. |
|
gradient_checkpointing: rerunning a forward-pass segment for each |
|
checkpointed segment during backward. |
|
""" |
|
super().__init__() |
|
self._output_size = output_size |
|
|
|
self.global_cmvn = global_cmvn |
|
self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer]( |
|
input_size, |
|
output_size, |
|
dropout_rate, |
|
COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size, |
|
positional_dropout_rate), |
|
) |
|
|
|
self.normalize_before = normalize_before |
|
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5) |
|
self.static_chunk_size = static_chunk_size |
|
self.use_dynamic_chunk = use_dynamic_chunk |
|
self.use_dynamic_left_chunk = use_dynamic_left_chunk |
|
self.gradient_checkpointing = gradient_checkpointing |
|
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]() |
|
|
|
encoder_selfattn_layer_args = ( |
|
attention_heads, |
|
output_size, |
|
attention_dropout_rate, |
|
key_bias, |
|
) |
|
|
|
positionwise_layer_args = ( |
|
output_size, |
|
linear_units, |
|
dropout_rate, |
|
activation, |
|
) |
|
|
|
convolution_layer_args = (output_size, cnn_module_kernel, activation, |
|
cnn_module_norm, causal) |
|
self.pre_lookahead_layer = PreLookaheadLayer(channels=512, pre_lookahead_len=3) |
|
self.encoders = torch.nn.ModuleList([ |
|
ConformerEncoderLayer( |
|
output_size, |
|
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type]( |
|
*encoder_selfattn_layer_args), |
|
PositionwiseFeedForward(*positionwise_layer_args), |
|
PositionwiseFeedForward( |
|
*positionwise_layer_args) if macaron_style else None, |
|
ConvolutionModule( |
|
*convolution_layer_args) if use_cnn_module else None, |
|
dropout_rate, |
|
normalize_before, |
|
) for _ in range(num_blocks) |
|
]) |
|
self.up_layer = Upsample1D(channels=512, out_channels=512, stride=2) |
|
self.up_embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer]( |
|
input_size, |
|
output_size, |
|
dropout_rate, |
|
COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size, |
|
positional_dropout_rate), |
|
) |
|
self.up_encoders = torch.nn.ModuleList([ |
|
ConformerEncoderLayer( |
|
output_size, |
|
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type]( |
|
*encoder_selfattn_layer_args), |
|
PositionwiseFeedForward(*positionwise_layer_args), |
|
PositionwiseFeedForward( |
|
*positionwise_layer_args) if macaron_style else None, |
|
ConvolutionModule( |
|
*convolution_layer_args) if use_cnn_module else None, |
|
dropout_rate, |
|
normalize_before, |
|
) for _ in range(4) |
|
]) |
|
|
|
def output_size(self) -> int: |
|
return self._output_size |
|
|
|
def forward( |
|
self, |
|
xs: torch.Tensor, |
|
xs_lens: torch.Tensor, |
|
decoding_chunk_size: int = 0, |
|
num_decoding_left_chunks: int = -1, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Embed positions in tensor. |
|
|
|
Args: |
|
xs: padded input tensor (B, T, D) |
|
xs_lens: input length (B) |
|
decoding_chunk_size: decoding chunk size for dynamic chunk |
|
0: default for training, use random dynamic chunk. |
|
<0: for decoding, use full chunk. |
|
>0: for decoding, use fixed chunk size as set. |
|
num_decoding_left_chunks: number of left chunks, this is for decoding, |
|
the chunk size is decoding_chunk_size. |
|
>=0: use num_decoding_left_chunks |
|
<0: use all left chunks |
|
Returns: |
|
encoder output tensor xs, and subsampled masks |
|
xs: padded output tensor (B, T' ~= T/subsample_rate, D) |
|
masks: torch.Tensor batch padding mask after subsample |
|
(B, 1, T' ~= T/subsample_rate) |
|
NOTE(xcsong): |
|
We pass the `__call__` method of the modules instead of `forward` to the |
|
checkpointing API because `__call__` attaches all the hooks of the module. |
|
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2 |
|
""" |
|
T = xs.size(1) |
|
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) |
|
if self.global_cmvn is not None: |
|
xs = self.global_cmvn(xs) |
|
xs, pos_emb, masks = self.embed(xs, masks) |
|
mask_pad = masks |
|
chunk_masks = add_optional_chunk_mask(xs, masks, |
|
self.use_dynamic_chunk, |
|
self.use_dynamic_left_chunk, |
|
decoding_chunk_size, |
|
self.static_chunk_size, |
|
num_decoding_left_chunks) |
|
|
|
xs = self.pre_lookahead_layer(xs) |
|
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad) |
|
|
|
|
|
xs = xs.transpose(1, 2).contiguous() |
|
xs, xs_lens = self.up_layer(xs, xs_lens) |
|
xs = xs.transpose(1, 2).contiguous() |
|
T = xs.size(1) |
|
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) |
|
xs, pos_emb, masks = self.up_embed(xs, masks) |
|
mask_pad = masks |
|
chunk_masks = add_optional_chunk_mask(xs, masks, |
|
self.use_dynamic_chunk, |
|
self.use_dynamic_left_chunk, |
|
decoding_chunk_size, |
|
self.static_chunk_size * self.up_layer.stride, |
|
num_decoding_left_chunks) |
|
xs = self.forward_up_layers(xs, chunk_masks, pos_emb, mask_pad) |
|
|
|
if self.normalize_before: |
|
xs = self.after_norm(xs) |
|
|
|
|
|
|
|
return xs, masks |
|
|
|
def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor, |
|
pos_emb: torch.Tensor, |
|
mask_pad: torch.Tensor) -> torch.Tensor: |
|
for layer in self.encoders: |
|
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) |
|
return xs |
|
|
|
def forward_up_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor, |
|
pos_emb: torch.Tensor, |
|
mask_pad: torch.Tensor) -> torch.Tensor: |
|
for layer in self.up_encoders: |
|
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) |
|
return xs |
|
|