|
import torch |
|
import torch.nn as nn |
|
from torch.nn.utils.parametrizations import weight_norm |
|
from typing import List, Optional, Tuple |
|
from einops import rearrange |
|
from torchaudio.transforms import Spectrogram |
|
|
|
|
|
class MultipleDiscriminator(nn.Module): |
|
def __init__( |
|
self, mpd: nn.Module, mrd: nn.Module |
|
): |
|
super().__init__() |
|
self.mpd = mpd |
|
self.mrd = mrd |
|
|
|
def forward(self, y: torch.Tensor, y_hat: torch.Tensor): |
|
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], [] |
|
this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mpd(y.unsqueeze(dim=1), y_hat.unsqueeze(dim=1)) |
|
y_d_rs += this_y_d_rs |
|
y_d_gs += this_y_d_gs |
|
fmap_rs += this_fmap_rs |
|
fmap_gs += this_fmap_gs |
|
this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mrd(y, y_hat) |
|
y_d_rs += this_y_d_rs |
|
y_d_gs += this_y_d_gs |
|
fmap_rs += this_fmap_rs |
|
fmap_gs += this_fmap_gs |
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
class MultiResolutionDiscriminator(nn.Module): |
|
def __init__( |
|
self, |
|
fft_sizes: Tuple[int, ...] = (2048, 1024, 512), |
|
num_embeddings: Optional[int] = None, |
|
): |
|
""" |
|
Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec. |
|
Additionally, it allows incorporating conditional information with a learned embeddings table. |
|
|
|
Args: |
|
fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512). |
|
num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator. |
|
Defaults to None. |
|
""" |
|
|
|
super().__init__() |
|
self.discriminators = nn.ModuleList( |
|
[DiscriminatorR(window_length=w, num_embeddings=num_embeddings) for w in fft_sizes] |
|
) |
|
|
|
def forward( |
|
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None |
|
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]: |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
|
|
for d in self.discriminators: |
|
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id) |
|
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
class DiscriminatorR(nn.Module): |
|
def __init__( |
|
self, |
|
window_length: int, |
|
num_embeddings: Optional[int] = None, |
|
channels: int = 32, |
|
hop_factor: float = 0.25, |
|
bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)), |
|
): |
|
super().__init__() |
|
self.window_length = window_length |
|
self.hop_factor = hop_factor |
|
self.spec_fn = Spectrogram( |
|
n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None |
|
) |
|
n_fft = window_length // 2 + 1 |
|
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands] |
|
self.bands = bands |
|
convs = lambda: nn.ModuleList( |
|
[ |
|
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))), |
|
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), |
|
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), |
|
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), |
|
weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))), |
|
] |
|
) |
|
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))]) |
|
|
|
if num_embeddings is not None: |
|
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels) |
|
torch.nn.init.zeros_(self.emb.weight) |
|
|
|
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1))) |
|
|
|
def spectrogram(self, x): |
|
|
|
x = x - x.mean(dim=-1, keepdims=True) |
|
|
|
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9) |
|
x = self.spec_fn(x) |
|
x = torch.view_as_real(x) |
|
x = rearrange(x, "b f t c -> b c t f") |
|
|
|
x_bands = [x[..., b[0]: b[1]] for b in self.bands] |
|
return x_bands |
|
|
|
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None): |
|
x_bands = self.spectrogram(x) |
|
fmap = [] |
|
x = [] |
|
for band, stack in zip(x_bands, self.band_convs): |
|
for i, layer in enumerate(stack): |
|
band = layer(band) |
|
band = torch.nn.functional.leaky_relu(band, 0.1) |
|
if i > 0: |
|
fmap.append(band) |
|
x.append(band) |
|
x = torch.cat(x, dim=-1) |
|
if cond_embedding_id is not None: |
|
emb = self.emb(cond_embedding_id) |
|
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True) |
|
else: |
|
h = 0 |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x += h |
|
|
|
return x, fmap |
|
|