|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import threading |
|
import torch |
|
import torch.nn.functional as F |
|
from matcha.models.components.flow_matching import BASECFM |
|
|
|
|
|
class ConditionalCFM(BASECFM): |
|
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None): |
|
super().__init__( |
|
n_feats=in_channels, |
|
cfm_params=cfm_params, |
|
n_spks=n_spks, |
|
spk_emb_dim=spk_emb_dim, |
|
) |
|
self.t_scheduler = cfm_params.t_scheduler |
|
self.training_cfg_rate = cfm_params.training_cfg_rate |
|
self.inference_cfg_rate = cfm_params.inference_cfg_rate |
|
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0) |
|
|
|
self.estimator = estimator |
|
self.lock = threading.Lock() |
|
|
|
@torch.inference_mode() |
|
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)): |
|
"""Forward diffusion |
|
|
|
Args: |
|
mu (torch.Tensor): output of encoder |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
mask (torch.Tensor): output_mask |
|
shape: (batch_size, 1, mel_timesteps) |
|
n_timesteps (int): number of diffusion steps |
|
temperature (float, optional): temperature for scaling noise. Defaults to 1.0. |
|
spks (torch.Tensor, optional): speaker ids. Defaults to None. |
|
shape: (batch_size, spk_emb_dim) |
|
cond: Not used but kept for future purposes |
|
|
|
Returns: |
|
sample: generated mel-spectrogram |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
""" |
|
|
|
z = torch.randn_like(mu).to(mu.device).to(mu.dtype) * temperature |
|
cache_size = flow_cache.shape[2] |
|
|
|
if cache_size != 0: |
|
z[:, :, :cache_size] = flow_cache[:, :, :, 0] |
|
mu[:, :, :cache_size] = flow_cache[:, :, :, 1] |
|
z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2) |
|
mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2) |
|
flow_cache = torch.stack([z_cache, mu_cache], dim=-1) |
|
|
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype) |
|
if self.t_scheduler == 'cosine': |
|
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi) |
|
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache |
|
|
|
def solve_euler(self, x, t_span, mu, mask, spks, cond): |
|
""" |
|
Fixed euler solver for ODEs. |
|
Args: |
|
x (torch.Tensor): random noise |
|
t_span (torch.Tensor): n_timesteps interpolated |
|
shape: (n_timesteps + 1,) |
|
mu (torch.Tensor): output of encoder |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
mask (torch.Tensor): output_mask |
|
shape: (batch_size, 1, mel_timesteps) |
|
spks (torch.Tensor, optional): speaker ids. Defaults to None. |
|
shape: (batch_size, spk_emb_dim) |
|
cond: Not used but kept for future purposes |
|
""" |
|
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0] |
|
t = t.unsqueeze(dim=0) |
|
|
|
|
|
|
|
sol = [] |
|
|
|
|
|
x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype) |
|
mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype) |
|
mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype) |
|
t_in = torch.zeros([2], device=x.device, dtype=x.dtype) |
|
spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype) |
|
cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype) |
|
for step in range(1, len(t_span)): |
|
|
|
x_in[:] = x |
|
mask_in[:] = mask |
|
mu_in[0] = mu |
|
t_in[:] = t.unsqueeze(0) |
|
spks_in[0] = spks |
|
cond_in[0] = cond |
|
dphi_dt = self.forward_estimator( |
|
x_in, mask_in, |
|
mu_in, t_in, |
|
spks_in, |
|
cond_in |
|
) |
|
dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0) |
|
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt) |
|
x = x + dt * dphi_dt |
|
t = t + dt |
|
sol.append(x) |
|
if step < len(t_span) - 1: |
|
dt = t_span[step + 1] - t |
|
|
|
return sol[-1].float() |
|
|
|
def forward_estimator(self, x, mask, mu, t, spks, cond): |
|
if isinstance(self.estimator, torch.nn.Module): |
|
return self.estimator.forward(x, mask, mu, t, spks, cond) |
|
else: |
|
with self.lock: |
|
self.estimator.set_input_shape('x', (2, 80, x.size(2))) |
|
self.estimator.set_input_shape('mask', (2, 1, x.size(2))) |
|
self.estimator.set_input_shape('mu', (2, 80, x.size(2))) |
|
self.estimator.set_input_shape('t', (2,)) |
|
self.estimator.set_input_shape('spks', (2, 80)) |
|
self.estimator.set_input_shape('cond', (2, 80, x.size(2))) |
|
|
|
self.estimator.execute_v2([x.contiguous().data_ptr(), |
|
mask.contiguous().data_ptr(), |
|
mu.contiguous().data_ptr(), |
|
t.contiguous().data_ptr(), |
|
spks.contiguous().data_ptr(), |
|
cond.contiguous().data_ptr(), |
|
x.data_ptr()]) |
|
return x |
|
|
|
def compute_loss(self, x1, mask, mu, spks=None, cond=None): |
|
"""Computes diffusion loss |
|
|
|
Args: |
|
x1 (torch.Tensor): Target |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
mask (torch.Tensor): target mask |
|
shape: (batch_size, 1, mel_timesteps) |
|
mu (torch.Tensor): output of encoder |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
spks (torch.Tensor, optional): speaker embedding. Defaults to None. |
|
shape: (batch_size, spk_emb_dim) |
|
|
|
Returns: |
|
loss: conditional flow matching loss |
|
y: conditional flow |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
""" |
|
b, _, t = mu.shape |
|
|
|
|
|
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype) |
|
if self.t_scheduler == 'cosine': |
|
t = 1 - torch.cos(t * 0.5 * torch.pi) |
|
|
|
z = torch.randn_like(x1) |
|
|
|
y = (1 - (1 - self.sigma_min) * t) * z + t * x1 |
|
u = x1 - (1 - self.sigma_min) * z |
|
|
|
|
|
if self.training_cfg_rate > 0: |
|
cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate |
|
mu = mu * cfg_mask.view(-1, 1, 1) |
|
spks = spks * cfg_mask.view(-1, 1) |
|
cond = cond * cfg_mask.view(-1, 1, 1) |
|
|
|
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond) |
|
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1]) |
|
return loss, y |
|
|
|
|
|
class CausalConditionalCFM(ConditionalCFM): |
|
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None): |
|
super().__init__(in_channels, cfm_params, n_spks, spk_emb_dim, estimator) |
|
self.rand_noise = torch.randn([1, 80, 50 * 300]) |
|
|
|
@torch.inference_mode() |
|
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None): |
|
"""Forward diffusion |
|
|
|
Args: |
|
mu (torch.Tensor): output of encoder |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
mask (torch.Tensor): output_mask |
|
shape: (batch_size, 1, mel_timesteps) |
|
n_timesteps (int): number of diffusion steps |
|
temperature (float, optional): temperature for scaling noise. Defaults to 1.0. |
|
spks (torch.Tensor, optional): speaker ids. Defaults to None. |
|
shape: (batch_size, spk_emb_dim) |
|
cond: Not used but kept for future purposes |
|
|
|
Returns: |
|
sample: generated mel-spectrogram |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
""" |
|
|
|
z = self.rand_noise[:, :, :mu.size(2)].to(mu.device).to(mu.dtype) * temperature |
|
|
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype) |
|
if self.t_scheduler == 'cosine': |
|
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi) |
|
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None |
|
|