kevin1010607 commited on
Commit
87866cb
1 Parent(s): 5c01481

Model save

Browse files
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ base_model: meta-llama/Llama-2-7b-hf
4
+ tags:
5
+ - trl
6
+ - sft
7
+ - generated_from_trainer
8
+ datasets:
9
+ - generator
10
+ model-index:
11
+ - name: llama2-7b-sft-full-llama2
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # llama2-7b-sft-full-llama2
19
+
20
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the generator dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 1.0380
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 2e-05
42
+ - train_batch_size: 2
43
+ - eval_batch_size: 2
44
+ - seed: 42
45
+ - distributed_type: multi-GPU
46
+ - num_devices: 8
47
+ - gradient_accumulation_steps: 8
48
+ - total_train_batch_size: 128
49
+ - total_eval_batch_size: 16
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: cosine
52
+ - lr_scheduler_warmup_ratio: 0.1
53
+ - num_epochs: 3
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss |
58
+ |:-------------:|:------:|:----:|:---------------:|
59
+ | 1.0183 | 0.9980 | 126 | 1.0127 |
60
+ | 0.869 | 1.9960 | 252 | 1.0026 |
61
+ | 0.714 | 2.9941 | 378 | 1.0380 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.41.2
67
+ - Pytorch 2.3.0a0+ebedce2
68
+ - Datasets 2.19.2
69
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.994059405940594,
3
+ "total_flos": 158238674780160.0,
4
+ "train_loss": 0.8970171990533354,
5
+ "train_runtime": 67109.8008,
6
+ "train_samples": 61134,
7
+ "train_samples_per_second": 0.722,
8
+ "train_steps_per_second": 0.006
9
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.41.2"
10
+ }
model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f3be8e55bb255cd2c7dddf5fa5f087353ac62d8c7383838c9e1cd8cab5422bc
3
+ size 4840396416
model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fd67afdb2d4dc4ab5b8d20c36b22e679c02d427fda130f5819ef0ba720ac344
3
+ size 4857206856
model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62fe28bed60d4067067cf28d19bab65cf64202bbf5fa129ef044e0859cd5bb69
3
+ size 4857206904
model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c54b034d23dbbc5ab35163313cebe7eee45f3d86e2102ab0a56844a26799dfb8
3
+ size 4857206904
model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a45fad17ae0b63365efb9d1cb1e17ee6d216d789957c9da66032ab5321e05987
3
+ size 4857206904
model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52523820d249772e255bbf93dfb651a2d25b7baf907d1e863732be9e56699f3b
3
+ size 2684472112
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26953662464
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00006.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00006.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00003-of-00006.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00004-of-00006.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00004-of-00006.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00004-of-00006.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00004-of-00006.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00005-of-00006.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00005-of-00006.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00005-of-00006.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00005-of-00006.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00005-of-00006.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00005-of-00006.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00006-of-00006.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00006-of-00006.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00006-of-00006.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
296
+ "model.norm.weight": "model-00006-of-00006.safetensors"
297
+ }
298
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.994059405940594,
3
+ "total_flos": 158238674780160.0,
4
+ "train_loss": 0.8970171990533354,
5
+ "train_runtime": 67109.8008,
6
+ "train_samples": 61134,
7
+ "train_samples_per_second": 0.722,
8
+ "train_steps_per_second": 0.006
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,2712 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.994059405940594,
5
+ "eval_steps": 500,
6
+ "global_step": 378,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.007920792079207921,
13
+ "grad_norm": 5.2691683098946545,
14
+ "learning_rate": 5.263157894736843e-07,
15
+ "loss": 1.568,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.015841584158415842,
20
+ "grad_norm": 5.00511067394956,
21
+ "learning_rate": 1.0526315789473685e-06,
22
+ "loss": 1.5221,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.023762376237623763,
27
+ "grad_norm": 4.54506426631759,
28
+ "learning_rate": 1.5789473684210526e-06,
29
+ "loss": 1.5171,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.031683168316831684,
34
+ "grad_norm": 4.36896006607012,
35
+ "learning_rate": 2.105263157894737e-06,
36
+ "loss": 1.5391,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.039603960396039604,
41
+ "grad_norm": 3.353266992703984,
42
+ "learning_rate": 2.631578947368421e-06,
43
+ "loss": 1.4111,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.047524752475247525,
48
+ "grad_norm": 2.920541207093266,
49
+ "learning_rate": 3.157894736842105e-06,
50
+ "loss": 1.3994,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.055445544554455446,
55
+ "grad_norm": 1.916780394273478,
56
+ "learning_rate": 3.6842105263157896e-06,
57
+ "loss": 1.3978,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06336633663366337,
62
+ "grad_norm": 1.7850272367832638,
63
+ "learning_rate": 4.210526315789474e-06,
64
+ "loss": 1.3282,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.07128712871287128,
69
+ "grad_norm": 1.7482580453609655,
70
+ "learning_rate": 4.736842105263158e-06,
71
+ "loss": 1.2986,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.07920792079207921,
76
+ "grad_norm": 1.449543281626886,
77
+ "learning_rate": 5.263157894736842e-06,
78
+ "loss": 1.2898,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.08712871287128712,
83
+ "grad_norm": 1.8720398819253754,
84
+ "learning_rate": 5.789473684210527e-06,
85
+ "loss": 1.2781,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.09504950495049505,
90
+ "grad_norm": 2.2015426049634503,
91
+ "learning_rate": 6.31578947368421e-06,
92
+ "loss": 1.2935,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.10297029702970296,
97
+ "grad_norm": 2.615874858377271,
98
+ "learning_rate": 6.842105263157896e-06,
99
+ "loss": 1.2973,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11089108910891089,
104
+ "grad_norm": 3.8682995800654187,
105
+ "learning_rate": 7.368421052631579e-06,
106
+ "loss": 1.2402,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.1188118811881188,
111
+ "grad_norm": 2.746699538417491,
112
+ "learning_rate": 7.894736842105265e-06,
113
+ "loss": 1.2562,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.12673267326732673,
118
+ "grad_norm": 2.682031995657898,
119
+ "learning_rate": 8.421052631578948e-06,
120
+ "loss": 1.2414,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.13465346534653466,
125
+ "grad_norm": 2.9242715554029663,
126
+ "learning_rate": 8.947368421052632e-06,
127
+ "loss": 1.173,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.14257425742574256,
132
+ "grad_norm": 2.7715021870832386,
133
+ "learning_rate": 9.473684210526315e-06,
134
+ "loss": 1.218,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.1504950495049505,
139
+ "grad_norm": 2.3528632221189607,
140
+ "learning_rate": 1e-05,
141
+ "loss": 1.1863,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.15841584158415842,
146
+ "grad_norm": 2.034765686956333,
147
+ "learning_rate": 1.0526315789473684e-05,
148
+ "loss": 1.1888,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.16633663366336635,
153
+ "grad_norm": 3.1288870944867666,
154
+ "learning_rate": 1.105263157894737e-05,
155
+ "loss": 1.1971,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.17425742574257425,
160
+ "grad_norm": 2.195732986258774,
161
+ "learning_rate": 1.1578947368421053e-05,
162
+ "loss": 1.1866,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.18217821782178217,
167
+ "grad_norm": 4.112336771867653,
168
+ "learning_rate": 1.2105263157894737e-05,
169
+ "loss": 1.1563,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.1900990099009901,
174
+ "grad_norm": 3.6328533281903526,
175
+ "learning_rate": 1.263157894736842e-05,
176
+ "loss": 1.175,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.19801980198019803,
181
+ "grad_norm": 1.6325540508979153,
182
+ "learning_rate": 1.3157894736842108e-05,
183
+ "loss": 1.1646,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.20594059405940593,
188
+ "grad_norm": 3.9494616695340077,
189
+ "learning_rate": 1.3684210526315791e-05,
190
+ "loss": 1.1323,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.21386138613861386,
195
+ "grad_norm": 3.27189931951213,
196
+ "learning_rate": 1.4210526315789475e-05,
197
+ "loss": 1.1408,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.22178217821782178,
202
+ "grad_norm": 2.6804790210906573,
203
+ "learning_rate": 1.4736842105263159e-05,
204
+ "loss": 1.1319,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.2297029702970297,
209
+ "grad_norm": 1.1471627340033614,
210
+ "learning_rate": 1.5263157894736846e-05,
211
+ "loss": 1.1482,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.2376237623762376,
216
+ "grad_norm": 2.002020630505531,
217
+ "learning_rate": 1.578947368421053e-05,
218
+ "loss": 1.1494,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.24554455445544554,
223
+ "grad_norm": 2.4723778287869616,
224
+ "learning_rate": 1.6315789473684213e-05,
225
+ "loss": 1.1441,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.25346534653465347,
230
+ "grad_norm": 2.229781993318989,
231
+ "learning_rate": 1.6842105263157896e-05,
232
+ "loss": 1.1235,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2613861386138614,
237
+ "grad_norm": 1.7701112722120012,
238
+ "learning_rate": 1.736842105263158e-05,
239
+ "loss": 1.1126,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.2693069306930693,
244
+ "grad_norm": 1.064748424759578,
245
+ "learning_rate": 1.7894736842105264e-05,
246
+ "loss": 1.1595,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.27722772277227725,
251
+ "grad_norm": 1.2312931929901163,
252
+ "learning_rate": 1.8421052631578947e-05,
253
+ "loss": 1.1668,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.2851485148514851,
258
+ "grad_norm": 1.7551020997420819,
259
+ "learning_rate": 1.894736842105263e-05,
260
+ "loss": 1.0913,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.29306930693069305,
265
+ "grad_norm": 1.7687041331840054,
266
+ "learning_rate": 1.9473684210526318e-05,
267
+ "loss": 1.1152,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.300990099009901,
272
+ "grad_norm": 0.5975775886980378,
273
+ "learning_rate": 2e-05,
274
+ "loss": 1.1279,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3089108910891089,
279
+ "grad_norm": 1.7305083714637768,
280
+ "learning_rate": 1.999957311703368e-05,
281
+ "loss": 1.0947,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.31683168316831684,
286
+ "grad_norm": 1.844146398722995,
287
+ "learning_rate": 1.9998292504580528e-05,
288
+ "loss": 1.0906,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.32475247524752476,
293
+ "grad_norm": 0.7796143095441499,
294
+ "learning_rate": 1.9996158271974875e-05,
295
+ "loss": 1.1236,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3326732673267327,
300
+ "grad_norm": 1.5056201561723581,
301
+ "learning_rate": 1.9993170601430233e-05,
302
+ "loss": 1.0662,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.3405940594059406,
307
+ "grad_norm": 1.8181218416149059,
308
+ "learning_rate": 1.9989329748023728e-05,
309
+ "loss": 1.1041,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.3485148514851485,
314
+ "grad_norm": 1.0925270287101072,
315
+ "learning_rate": 1.9984636039674342e-05,
316
+ "loss": 1.1226,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.3564356435643564,
321
+ "grad_norm": 0.9921305736361253,
322
+ "learning_rate": 1.9979089877114905e-05,
323
+ "loss": 1.0756,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.36435643564356435,
328
+ "grad_norm": 1.2754799989749876,
329
+ "learning_rate": 1.997269173385788e-05,
330
+ "loss": 1.1173,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.3722772277227723,
335
+ "grad_norm": 0.8010641417555526,
336
+ "learning_rate": 1.9965442156154947e-05,
337
+ "loss": 1.1113,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.3801980198019802,
342
+ "grad_norm": 0.7444563010730426,
343
+ "learning_rate": 1.9957341762950346e-05,
344
+ "loss": 1.1396,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.38811881188118813,
349
+ "grad_norm": 1.1638152394745782,
350
+ "learning_rate": 1.994839124582806e-05,
351
+ "loss": 1.1117,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.39603960396039606,
356
+ "grad_norm": 0.7261236266090463,
357
+ "learning_rate": 1.993859136895274e-05,
358
+ "loss": 1.0745,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.403960396039604,
363
+ "grad_norm": 0.6556537970861287,
364
+ "learning_rate": 1.9927942969004493e-05,
365
+ "loss": 1.0783,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.41188118811881186,
370
+ "grad_norm": 1.0338775189848177,
371
+ "learning_rate": 1.991644695510743e-05,
372
+ "loss": 1.1053,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.4198019801980198,
377
+ "grad_norm": 0.5045982803365276,
378
+ "learning_rate": 1.9904104308752053e-05,
379
+ "loss": 1.1187,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4277227722772277,
384
+ "grad_norm": 0.8811507158721841,
385
+ "learning_rate": 1.9890916083711463e-05,
386
+ "loss": 1.0666,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.43564356435643564,
391
+ "grad_norm": 0.7323789997357792,
392
+ "learning_rate": 1.9876883405951378e-05,
393
+ "loss": 1.0613,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.44356435643564357,
398
+ "grad_norm": 0.43382558782064967,
399
+ "learning_rate": 1.9862007473534026e-05,
400
+ "loss": 1.0946,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4514851485148515,
405
+ "grad_norm": 0.7855920569177011,
406
+ "learning_rate": 1.9846289556515835e-05,
407
+ "loss": 1.0801,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.4594059405940594,
412
+ "grad_norm": 0.5060051358313292,
413
+ "learning_rate": 1.982973099683902e-05,
414
+ "loss": 1.0559,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.46732673267326735,
419
+ "grad_norm": 0.6612232058281015,
420
+ "learning_rate": 1.981233320821699e-05,
421
+ "loss": 1.0684,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.4752475247524752,
426
+ "grad_norm": 0.6407758050553994,
427
+ "learning_rate": 1.979409767601366e-05,
428
+ "loss": 1.0392,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.48316831683168315,
433
+ "grad_norm": 0.4238055278476331,
434
+ "learning_rate": 1.9775025957116657e-05,
435
+ "loss": 1.0852,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.4910891089108911,
440
+ "grad_norm": 0.6366553572873023,
441
+ "learning_rate": 1.975511967980437e-05,
442
+ "loss": 1.0718,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.499009900990099,
447
+ "grad_norm": 0.4560763634964661,
448
+ "learning_rate": 1.9734380543606932e-05,
449
+ "loss": 1.0491,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5069306930693069,
454
+ "grad_norm": 0.47744475456040364,
455
+ "learning_rate": 1.971281031916114e-05,
456
+ "loss": 1.0682,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5148514851485149,
461
+ "grad_norm": 0.6139591331770152,
462
+ "learning_rate": 1.9690410848059278e-05,
463
+ "loss": 1.0859,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5227722772277228,
468
+ "grad_norm": 0.4633776390020583,
469
+ "learning_rate": 1.9667184042691877e-05,
470
+ "loss": 1.0637,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5306930693069307,
475
+ "grad_norm": 0.48132534481018163,
476
+ "learning_rate": 1.964313188608445e-05,
477
+ "loss": 1.1127,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5386138613861386,
482
+ "grad_norm": 0.5078593046327664,
483
+ "learning_rate": 1.961825643172819e-05,
484
+ "loss": 1.0666,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5465346534653466,
489
+ "grad_norm": 0.4641018705804529,
490
+ "learning_rate": 1.9592559803404652e-05,
491
+ "loss": 1.0412,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5544554455445545,
496
+ "grad_norm": 0.4477782377674348,
497
+ "learning_rate": 1.956604419500441e-05,
498
+ "loss": 1.0319,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.5623762376237624,
503
+ "grad_norm": 0.4399022823054154,
504
+ "learning_rate": 1.953871187033978e-05,
505
+ "loss": 1.0433,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.5702970297029702,
510
+ "grad_norm": 0.49392160981903666,
511
+ "learning_rate": 1.9510565162951538e-05,
512
+ "loss": 1.063,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.5782178217821782,
517
+ "grad_norm": 0.47294899191298795,
518
+ "learning_rate": 1.948160647590966e-05,
519
+ "loss": 1.0749,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.5861386138613861,
524
+ "grad_norm": 0.41344043915965834,
525
+ "learning_rate": 1.94518382816082e-05,
526
+ "loss": 1.0979,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.594059405940594,
531
+ "grad_norm": 0.5011686560663466,
532
+ "learning_rate": 1.9421263121554163e-05,
533
+ "loss": 1.015,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.601980198019802,
538
+ "grad_norm": 0.39582414491214485,
539
+ "learning_rate": 1.938988360615057e-05,
540
+ "loss": 1.0383,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6099009900990099,
545
+ "grad_norm": 0.48768604319919506,
546
+ "learning_rate": 1.9357702414473528e-05,
547
+ "loss": 1.0526,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6178217821782178,
552
+ "grad_norm": 0.45230653840089824,
553
+ "learning_rate": 1.932472229404356e-05,
554
+ "loss": 1.0308,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6257425742574257,
559
+ "grad_norm": 0.4138418438484353,
560
+ "learning_rate": 1.9290946060590992e-05,
561
+ "loss": 1.0532,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6336633663366337,
566
+ "grad_norm": 0.4370072818318615,
567
+ "learning_rate": 1.9256376597815565e-05,
568
+ "loss": 1.0673,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6415841584158416,
573
+ "grad_norm": 0.39792387068550145,
574
+ "learning_rate": 1.9221016857140244e-05,
575
+ "loss": 1.0101,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6495049504950495,
580
+ "grad_norm": 0.5007989711284164,
581
+ "learning_rate": 1.9184869857459233e-05,
582
+ "loss": 1.012,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.6574257425742575,
587
+ "grad_norm": 0.4103210495096538,
588
+ "learning_rate": 1.9147938684880213e-05,
589
+ "loss": 1.0374,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.6653465346534654,
594
+ "grad_norm": 0.4872855085217254,
595
+ "learning_rate": 1.9110226492460886e-05,
596
+ "loss": 1.0859,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.6732673267326733,
601
+ "grad_norm": 0.422627898101724,
602
+ "learning_rate": 1.9071736499939765e-05,
603
+ "loss": 1.0518,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.6811881188118812,
608
+ "grad_norm": 0.41564147530018053,
609
+ "learning_rate": 1.903247199346129e-05,
610
+ "loss": 1.0178,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.689108910891089,
615
+ "grad_norm": 0.4358424246570489,
616
+ "learning_rate": 1.8992436325295258e-05,
617
+ "loss": 1.0677,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.697029702970297,
622
+ "grad_norm": 0.41355898391860707,
623
+ "learning_rate": 1.8951632913550625e-05,
624
+ "loss": 1.0237,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7049504950495049,
629
+ "grad_norm": 0.3823609847824327,
630
+ "learning_rate": 1.891006524188368e-05,
631
+ "loss": 0.9833,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.7128712871287128,
636
+ "grad_norm": 0.39209473964132163,
637
+ "learning_rate": 1.886773685920062e-05,
638
+ "loss": 1.0451,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7207920792079208,
643
+ "grad_norm": 0.4140041300883924,
644
+ "learning_rate": 1.882465137935456e-05,
645
+ "loss": 1.0222,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7287128712871287,
650
+ "grad_norm": 0.40375021194700533,
651
+ "learning_rate": 1.878081248083698e-05,
652
+ "loss": 1.0952,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7366336633663366,
657
+ "grad_norm": 0.4414196189759205,
658
+ "learning_rate": 1.8736223906463698e-05,
659
+ "loss": 1.0156,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.7445544554455445,
664
+ "grad_norm": 0.4386744025847356,
665
+ "learning_rate": 1.8690889463055285e-05,
666
+ "loss": 1.0279,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.7524752475247525,
671
+ "grad_norm": 0.7947840810413794,
672
+ "learning_rate": 1.864481302111208e-05,
673
+ "loss": 1.0593,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.7603960396039604,
678
+ "grad_norm": 0.42527281294211106,
679
+ "learning_rate": 1.8597998514483724e-05,
680
+ "loss": 1.0055,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.7683168316831683,
685
+ "grad_norm": 0.44600952063933513,
686
+ "learning_rate": 1.855044994003331e-05,
687
+ "loss": 1.0189,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.7762376237623763,
692
+ "grad_norm": 0.41381659543669813,
693
+ "learning_rate": 1.8502171357296144e-05,
694
+ "loss": 1.0385,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.7841584158415842,
699
+ "grad_norm": 0.4356737265816363,
700
+ "learning_rate": 1.845316688813314e-05,
701
+ "loss": 1.0188,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.7920792079207921,
706
+ "grad_norm": 0.3910640622588359,
707
+ "learning_rate": 1.840344071637893e-05,
708
+ "loss": 1.0,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8,
713
+ "grad_norm": 2.5929595435725368,
714
+ "learning_rate": 1.8352997087484657e-05,
715
+ "loss": 1.0768,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.807920792079208,
720
+ "grad_norm": 0.39724371010118187,
721
+ "learning_rate": 1.8301840308155507e-05,
722
+ "loss": 1.0546,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8158415841584158,
727
+ "grad_norm": 0.3924179902332133,
728
+ "learning_rate": 1.8249974745983023e-05,
729
+ "loss": 1.0163,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8237623762376237,
734
+ "grad_norm": 0.4531863562551441,
735
+ "learning_rate": 1.8197404829072214e-05,
736
+ "loss": 1.0125,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.8316831683168316,
741
+ "grad_norm": 0.44574269385841797,
742
+ "learning_rate": 1.8144135045663486e-05,
743
+ "loss": 1.0399,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.8396039603960396,
748
+ "grad_norm": 0.3994623879554383,
749
+ "learning_rate": 1.8090169943749477e-05,
750
+ "loss": 1.0103,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.8475247524752475,
755
+ "grad_norm": 0.41462016834859783,
756
+ "learning_rate": 1.8035514130686737e-05,
757
+ "loss": 1.0474,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.8554455445544554,
762
+ "grad_norm": 0.44011181806180777,
763
+ "learning_rate": 1.7980172272802398e-05,
764
+ "loss": 1.0274,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.8633663366336634,
769
+ "grad_norm": 0.4581477822740845,
770
+ "learning_rate": 1.792414909499574e-05,
771
+ "loss": 1.0291,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.8712871287128713,
776
+ "grad_norm": 0.3880729293901145,
777
+ "learning_rate": 1.7867449380334834e-05,
778
+ "loss": 1.0304,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.8792079207920792,
783
+ "grad_norm": 0.3756477226180992,
784
+ "learning_rate": 1.7810077969648157e-05,
785
+ "loss": 0.9737,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.8871287128712871,
790
+ "grad_norm": 0.38501494156072325,
791
+ "learning_rate": 1.77520397611113e-05,
792
+ "loss": 1.0222,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.8950495049504951,
797
+ "grad_norm": 0.3812791473176217,
798
+ "learning_rate": 1.769333970982879e-05,
799
+ "loss": 1.0568,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.902970297029703,
804
+ "grad_norm": 0.38636764366182014,
805
+ "learning_rate": 1.763398282741103e-05,
806
+ "loss": 1.0556,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9108910891089109,
811
+ "grad_norm": 0.3689101295336194,
812
+ "learning_rate": 1.757397418154643e-05,
813
+ "loss": 1.0143,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9188118811881189,
818
+ "grad_norm": 0.36527609469057676,
819
+ "learning_rate": 1.7513318895568734e-05,
820
+ "loss": 0.9986,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9267326732673268,
825
+ "grad_norm": 0.3986163851527506,
826
+ "learning_rate": 1.7452022148019626e-05,
827
+ "loss": 1.0462,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.9346534653465347,
832
+ "grad_norm": 0.37735673327905117,
833
+ "learning_rate": 1.7390089172206594e-05,
834
+ "loss": 1.0072,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.9425742574257425,
839
+ "grad_norm": 0.37706765852085494,
840
+ "learning_rate": 1.7327525255756118e-05,
841
+ "loss": 1.0323,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.9504950495049505,
846
+ "grad_norm": 0.39377310916431657,
847
+ "learning_rate": 1.7264335740162244e-05,
848
+ "loss": 1.0422,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.9584158415841584,
853
+ "grad_norm": 0.41314537071793267,
854
+ "learning_rate": 1.720052602033055e-05,
855
+ "loss": 0.9771,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.9663366336633663,
860
+ "grad_norm": 0.37875715597090986,
861
+ "learning_rate": 1.7136101544117526e-05,
862
+ "loss": 0.9968,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.9742574257425742,
867
+ "grad_norm": 0.37159716453417896,
868
+ "learning_rate": 1.7071067811865477e-05,
869
+ "loss": 1.0158,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.9821782178217822,
874
+ "grad_norm": 0.36633287049364816,
875
+ "learning_rate": 1.700543037593291e-05,
876
+ "loss": 1.0113,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.9900990099009901,
881
+ "grad_norm": 0.3639299308468012,
882
+ "learning_rate": 1.6939194840220497e-05,
883
+ "loss": 1.0108,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.998019801980198,
888
+ "grad_norm": 0.3687515525421076,
889
+ "learning_rate": 1.687236685969263e-05,
890
+ "loss": 1.0183,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.998019801980198,
895
+ "eval_loss": 1.0126549005508423,
896
+ "eval_runtime": 87.7583,
897
+ "eval_samples_per_second": 3.031,
898
+ "eval_steps_per_second": 0.194,
899
+ "step": 126
900
+ },
901
+ {
902
+ "epoch": 1.005940594059406,
903
+ "grad_norm": 0.6033515169314877,
904
+ "learning_rate": 1.6804952139894618e-05,
905
+ "loss": 0.9244,
906
+ "step": 127
907
+ },
908
+ {
909
+ "epoch": 1.0138613861386139,
910
+ "grad_norm": 0.5458375892374859,
911
+ "learning_rate": 1.6736956436465573e-05,
912
+ "loss": 0.8684,
913
+ "step": 128
914
+ },
915
+ {
916
+ "epoch": 1.0217821782178218,
917
+ "grad_norm": 0.6652946196593673,
918
+ "learning_rate": 1.6668385554647017e-05,
919
+ "loss": 0.8744,
920
+ "step": 129
921
+ },
922
+ {
923
+ "epoch": 1.0297029702970297,
924
+ "grad_norm": 0.47420107863397504,
925
+ "learning_rate": 1.659924534878723e-05,
926
+ "loss": 0.8562,
927
+ "step": 130
928
+ },
929
+ {
930
+ "epoch": 1.0376237623762377,
931
+ "grad_norm": 0.6395196023840517,
932
+ "learning_rate": 1.6529541721841444e-05,
933
+ "loss": 0.8653,
934
+ "step": 131
935
+ },
936
+ {
937
+ "epoch": 1.0455445544554456,
938
+ "grad_norm": 0.49490432639088666,
939
+ "learning_rate": 1.6459280624867876e-05,
940
+ "loss": 0.8939,
941
+ "step": 132
942
+ },
943
+ {
944
+ "epoch": 1.0534653465346535,
945
+ "grad_norm": 0.662156431335598,
946
+ "learning_rate": 1.638846805651961e-05,
947
+ "loss": 0.8772,
948
+ "step": 133
949
+ },
950
+ {
951
+ "epoch": 1.0613861386138614,
952
+ "grad_norm": 0.4315607187688008,
953
+ "learning_rate": 1.631711006253251e-05,
954
+ "loss": 0.8719,
955
+ "step": 134
956
+ },
957
+ {
958
+ "epoch": 1.0693069306930694,
959
+ "grad_norm": 0.5428981275030659,
960
+ "learning_rate": 1.6245212735208994e-05,
961
+ "loss": 0.8902,
962
+ "step": 135
963
+ },
964
+ {
965
+ "epoch": 1.0772277227722773,
966
+ "grad_norm": 0.4212431283579326,
967
+ "learning_rate": 1.617278221289793e-05,
968
+ "loss": 0.8958,
969
+ "step": 136
970
+ },
971
+ {
972
+ "epoch": 1.0851485148514852,
973
+ "grad_norm": 0.45956779312336216,
974
+ "learning_rate": 1.609982467947057e-05,
975
+ "loss": 0.8798,
976
+ "step": 137
977
+ },
978
+ {
979
+ "epoch": 1.0930693069306932,
980
+ "grad_norm": 0.5318677463313782,
981
+ "learning_rate": 1.6026346363792565e-05,
982
+ "loss": 0.8691,
983
+ "step": 138
984
+ },
985
+ {
986
+ "epoch": 1.100990099009901,
987
+ "grad_norm": 0.420504194389614,
988
+ "learning_rate": 1.595235353919219e-05,
989
+ "loss": 0.8711,
990
+ "step": 139
991
+ },
992
+ {
993
+ "epoch": 1.108910891089109,
994
+ "grad_norm": 0.4826547764308898,
995
+ "learning_rate": 1.5877852522924733e-05,
996
+ "loss": 0.8908,
997
+ "step": 140
998
+ },
999
+ {
1000
+ "epoch": 1.116831683168317,
1001
+ "grad_norm": 0.3992971335438903,
1002
+ "learning_rate": 1.580284967563316e-05,
1003
+ "loss": 0.8591,
1004
+ "step": 141
1005
+ },
1006
+ {
1007
+ "epoch": 1.1247524752475249,
1008
+ "grad_norm": 0.4402406328520412,
1009
+ "learning_rate": 1.5727351400805054e-05,
1010
+ "loss": 0.839,
1011
+ "step": 142
1012
+ },
1013
+ {
1014
+ "epoch": 1.1326732673267328,
1015
+ "grad_norm": 0.41454275441137073,
1016
+ "learning_rate": 1.565136414422592e-05,
1017
+ "loss": 0.8566,
1018
+ "step": 143
1019
+ },
1020
+ {
1021
+ "epoch": 1.1405940594059407,
1022
+ "grad_norm": 0.4296709034986113,
1023
+ "learning_rate": 1.5574894393428856e-05,
1024
+ "loss": 0.8881,
1025
+ "step": 144
1026
+ },
1027
+ {
1028
+ "epoch": 1.1485148514851484,
1029
+ "grad_norm": 0.45117629451958274,
1030
+ "learning_rate": 1.5497948677140673e-05,
1031
+ "loss": 0.8457,
1032
+ "step": 145
1033
+ },
1034
+ {
1035
+ "epoch": 1.1564356435643564,
1036
+ "grad_norm": 0.3989063232783904,
1037
+ "learning_rate": 1.5420533564724495e-05,
1038
+ "loss": 0.8805,
1039
+ "step": 146
1040
+ },
1041
+ {
1042
+ "epoch": 1.1643564356435643,
1043
+ "grad_norm": 0.44568328942669366,
1044
+ "learning_rate": 1.5342655665618885e-05,
1045
+ "loss": 0.853,
1046
+ "step": 147
1047
+ },
1048
+ {
1049
+ "epoch": 1.1722772277227722,
1050
+ "grad_norm": 0.39828075995328915,
1051
+ "learning_rate": 1.526432162877356e-05,
1052
+ "loss": 0.8831,
1053
+ "step": 148
1054
+ },
1055
+ {
1056
+ "epoch": 1.1801980198019801,
1057
+ "grad_norm": 0.41294672710780717,
1058
+ "learning_rate": 1.5185538142081721e-05,
1059
+ "loss": 0.8786,
1060
+ "step": 149
1061
+ },
1062
+ {
1063
+ "epoch": 1.188118811881188,
1064
+ "grad_norm": 0.40873959614869637,
1065
+ "learning_rate": 1.510631193180907e-05,
1066
+ "loss": 0.8684,
1067
+ "step": 150
1068
+ },
1069
+ {
1070
+ "epoch": 1.196039603960396,
1071
+ "grad_norm": 0.3978636394954677,
1072
+ "learning_rate": 1.5026649762019539e-05,
1073
+ "loss": 0.8756,
1074
+ "step": 151
1075
+ },
1076
+ {
1077
+ "epoch": 1.203960396039604,
1078
+ "grad_norm": 0.5036601026033098,
1079
+ "learning_rate": 1.4946558433997792e-05,
1080
+ "loss": 0.844,
1081
+ "step": 152
1082
+ },
1083
+ {
1084
+ "epoch": 1.2118811881188118,
1085
+ "grad_norm": 0.3932657455702579,
1086
+ "learning_rate": 1.4866044785668563e-05,
1087
+ "loss": 0.801,
1088
+ "step": 153
1089
+ },
1090
+ {
1091
+ "epoch": 1.2198019801980198,
1092
+ "grad_norm": 0.41396973144650107,
1093
+ "learning_rate": 1.4785115691012866e-05,
1094
+ "loss": 0.8854,
1095
+ "step": 154
1096
+ },
1097
+ {
1098
+ "epoch": 1.2277227722772277,
1099
+ "grad_norm": 0.4095963357893977,
1100
+ "learning_rate": 1.4703778059481096e-05,
1101
+ "loss": 0.8629,
1102
+ "step": 155
1103
+ },
1104
+ {
1105
+ "epoch": 1.2356435643564356,
1106
+ "grad_norm": 0.3844996926085625,
1107
+ "learning_rate": 1.4622038835403135e-05,
1108
+ "loss": 0.8802,
1109
+ "step": 156
1110
+ },
1111
+ {
1112
+ "epoch": 1.2435643564356436,
1113
+ "grad_norm": 0.38098631899426383,
1114
+ "learning_rate": 1.4539904997395468e-05,
1115
+ "loss": 0.8546,
1116
+ "step": 157
1117
+ },
1118
+ {
1119
+ "epoch": 1.2514851485148515,
1120
+ "grad_norm": 0.38645301150023,
1121
+ "learning_rate": 1.4457383557765385e-05,
1122
+ "loss": 0.8745,
1123
+ "step": 158
1124
+ },
1125
+ {
1126
+ "epoch": 1.2594059405940594,
1127
+ "grad_norm": 0.38284619702545075,
1128
+ "learning_rate": 1.4374481561912266e-05,
1129
+ "loss": 0.8618,
1130
+ "step": 159
1131
+ },
1132
+ {
1133
+ "epoch": 1.2673267326732673,
1134
+ "grad_norm": 0.4209251000095392,
1135
+ "learning_rate": 1.429120608772609e-05,
1136
+ "loss": 0.8839,
1137
+ "step": 160
1138
+ },
1139
+ {
1140
+ "epoch": 1.2752475247524753,
1141
+ "grad_norm": 0.402410646316122,
1142
+ "learning_rate": 1.4207564244983154e-05,
1143
+ "loss": 0.8741,
1144
+ "step": 161
1145
+ },
1146
+ {
1147
+ "epoch": 1.2831683168316832,
1148
+ "grad_norm": 0.39477095820040203,
1149
+ "learning_rate": 1.4123563174739036e-05,
1150
+ "loss": 0.8883,
1151
+ "step": 162
1152
+ },
1153
+ {
1154
+ "epoch": 1.2910891089108911,
1155
+ "grad_norm": 0.3924015414958881,
1156
+ "learning_rate": 1.403921004871895e-05,
1157
+ "loss": 0.8576,
1158
+ "step": 163
1159
+ },
1160
+ {
1161
+ "epoch": 1.299009900990099,
1162
+ "grad_norm": 0.4161025068008364,
1163
+ "learning_rate": 1.3954512068705425e-05,
1164
+ "loss": 0.8305,
1165
+ "step": 164
1166
+ },
1167
+ {
1168
+ "epoch": 1.306930693069307,
1169
+ "grad_norm": 0.4263635509257888,
1170
+ "learning_rate": 1.3869476465923455e-05,
1171
+ "loss": 0.8647,
1172
+ "step": 165
1173
+ },
1174
+ {
1175
+ "epoch": 1.314851485148515,
1176
+ "grad_norm": 0.39404329089929485,
1177
+ "learning_rate": 1.3784110500423104e-05,
1178
+ "loss": 0.8622,
1179
+ "step": 166
1180
+ },
1181
+ {
1182
+ "epoch": 1.3227722772277228,
1183
+ "grad_norm": 0.3805109485657045,
1184
+ "learning_rate": 1.3698421460459692e-05,
1185
+ "loss": 0.862,
1186
+ "step": 167
1187
+ },
1188
+ {
1189
+ "epoch": 1.3306930693069308,
1190
+ "grad_norm": 0.40690294201503635,
1191
+ "learning_rate": 1.3612416661871532e-05,
1192
+ "loss": 0.8647,
1193
+ "step": 168
1194
+ },
1195
+ {
1196
+ "epoch": 1.3386138613861387,
1197
+ "grad_norm": 0.4259562065252122,
1198
+ "learning_rate": 1.3526103447455326e-05,
1199
+ "loss": 0.8563,
1200
+ "step": 169
1201
+ },
1202
+ {
1203
+ "epoch": 1.3465346534653464,
1204
+ "grad_norm": 0.3810965967304589,
1205
+ "learning_rate": 1.3439489186339283e-05,
1206
+ "loss": 0.8311,
1207
+ "step": 170
1208
+ },
1209
+ {
1210
+ "epoch": 1.3544554455445543,
1211
+ "grad_norm": 0.39136590416953965,
1212
+ "learning_rate": 1.335258127335394e-05,
1213
+ "loss": 0.8471,
1214
+ "step": 171
1215
+ },
1216
+ {
1217
+ "epoch": 1.3623762376237623,
1218
+ "grad_norm": 0.41483855969298006,
1219
+ "learning_rate": 1.3265387128400833e-05,
1220
+ "loss": 0.8609,
1221
+ "step": 172
1222
+ },
1223
+ {
1224
+ "epoch": 1.3702970297029702,
1225
+ "grad_norm": 0.40516699447727095,
1226
+ "learning_rate": 1.3177914195819018e-05,
1227
+ "loss": 0.8275,
1228
+ "step": 173
1229
+ },
1230
+ {
1231
+ "epoch": 1.378217821782178,
1232
+ "grad_norm": 0.4793820142436531,
1233
+ "learning_rate": 1.3090169943749475e-05,
1234
+ "loss": 0.8749,
1235
+ "step": 174
1236
+ },
1237
+ {
1238
+ "epoch": 1.386138613861386,
1239
+ "grad_norm": 0.3840703344721545,
1240
+ "learning_rate": 1.3002161863497529e-05,
1241
+ "loss": 0.8966,
1242
+ "step": 175
1243
+ },
1244
+ {
1245
+ "epoch": 1.394059405940594,
1246
+ "grad_norm": 0.41308469917146595,
1247
+ "learning_rate": 1.2913897468893249e-05,
1248
+ "loss": 0.8914,
1249
+ "step": 176
1250
+ },
1251
+ {
1252
+ "epoch": 1.401980198019802,
1253
+ "grad_norm": 0.3827637794217713,
1254
+ "learning_rate": 1.2825384295649952e-05,
1255
+ "loss": 0.8299,
1256
+ "step": 177
1257
+ },
1258
+ {
1259
+ "epoch": 1.4099009900990098,
1260
+ "grad_norm": 0.4492756954997741,
1261
+ "learning_rate": 1.2736629900720832e-05,
1262
+ "loss": 0.8736,
1263
+ "step": 178
1264
+ },
1265
+ {
1266
+ "epoch": 1.4178217821782177,
1267
+ "grad_norm": 0.3770575870144539,
1268
+ "learning_rate": 1.2647641861653759e-05,
1269
+ "loss": 0.8602,
1270
+ "step": 179
1271
+ },
1272
+ {
1273
+ "epoch": 1.4257425742574257,
1274
+ "grad_norm": 0.3900899921685637,
1275
+ "learning_rate": 1.2558427775944357e-05,
1276
+ "loss": 0.8365,
1277
+ "step": 180
1278
+ },
1279
+ {
1280
+ "epoch": 1.4336633663366336,
1281
+ "grad_norm": 0.41840094530944894,
1282
+ "learning_rate": 1.2468995260387332e-05,
1283
+ "loss": 0.8993,
1284
+ "step": 181
1285
+ },
1286
+ {
1287
+ "epoch": 1.4415841584158415,
1288
+ "grad_norm": 0.40583158631957733,
1289
+ "learning_rate": 1.2379351950426188e-05,
1290
+ "loss": 0.8691,
1291
+ "step": 182
1292
+ },
1293
+ {
1294
+ "epoch": 1.4495049504950495,
1295
+ "grad_norm": 0.3966569139417299,
1296
+ "learning_rate": 1.2289505499501341e-05,
1297
+ "loss": 0.8711,
1298
+ "step": 183
1299
+ },
1300
+ {
1301
+ "epoch": 1.4574257425742574,
1302
+ "grad_norm": 0.41194466483513786,
1303
+ "learning_rate": 1.2199463578396688e-05,
1304
+ "loss": 0.8338,
1305
+ "step": 184
1306
+ },
1307
+ {
1308
+ "epoch": 1.4653465346534653,
1309
+ "grad_norm": 0.3818733353460163,
1310
+ "learning_rate": 1.21092338745847e-05,
1311
+ "loss": 0.8403,
1312
+ "step": 185
1313
+ },
1314
+ {
1315
+ "epoch": 1.4732673267326732,
1316
+ "grad_norm": 0.48110222651862666,
1317
+ "learning_rate": 1.2018824091570103e-05,
1318
+ "loss": 0.8359,
1319
+ "step": 186
1320
+ },
1321
+ {
1322
+ "epoch": 1.4811881188118812,
1323
+ "grad_norm": 0.39846082622633,
1324
+ "learning_rate": 1.192824194823217e-05,
1325
+ "loss": 0.8862,
1326
+ "step": 187
1327
+ },
1328
+ {
1329
+ "epoch": 1.489108910891089,
1330
+ "grad_norm": 0.4794826007648338,
1331
+ "learning_rate": 1.1837495178165706e-05,
1332
+ "loss": 0.8611,
1333
+ "step": 188
1334
+ },
1335
+ {
1336
+ "epoch": 1.497029702970297,
1337
+ "grad_norm": 0.41925943616423056,
1338
+ "learning_rate": 1.1746591529020789e-05,
1339
+ "loss": 0.8734,
1340
+ "step": 189
1341
+ },
1342
+ {
1343
+ "epoch": 1.504950495049505,
1344
+ "grad_norm": 0.40682041747226527,
1345
+ "learning_rate": 1.16555387618413e-05,
1346
+ "loss": 0.85,
1347
+ "step": 190
1348
+ },
1349
+ {
1350
+ "epoch": 1.5128712871287129,
1351
+ "grad_norm": 0.3925259196133537,
1352
+ "learning_rate": 1.156434465040231e-05,
1353
+ "loss": 0.8685,
1354
+ "step": 191
1355
+ },
1356
+ {
1357
+ "epoch": 1.5207920792079208,
1358
+ "grad_norm": 0.3917596296811381,
1359
+ "learning_rate": 1.1473016980546377e-05,
1360
+ "loss": 0.8613,
1361
+ "step": 192
1362
+ },
1363
+ {
1364
+ "epoch": 1.5287128712871287,
1365
+ "grad_norm": 0.3916872938793011,
1366
+ "learning_rate": 1.1381563549518823e-05,
1367
+ "loss": 0.8708,
1368
+ "step": 193
1369
+ },
1370
+ {
1371
+ "epoch": 1.5366336633663367,
1372
+ "grad_norm": 0.4079178768846547,
1373
+ "learning_rate": 1.1289992165302036e-05,
1374
+ "loss": 0.8444,
1375
+ "step": 194
1376
+ },
1377
+ {
1378
+ "epoch": 1.5445544554455446,
1379
+ "grad_norm": 0.4239468808643011,
1380
+ "learning_rate": 1.1198310645948833e-05,
1381
+ "loss": 0.8475,
1382
+ "step": 195
1383
+ },
1384
+ {
1385
+ "epoch": 1.5524752475247525,
1386
+ "grad_norm": 0.4143090508458373,
1387
+ "learning_rate": 1.1106526818915008e-05,
1388
+ "loss": 0.8584,
1389
+ "step": 196
1390
+ },
1391
+ {
1392
+ "epoch": 1.5603960396039604,
1393
+ "grad_norm": 0.3749410819598408,
1394
+ "learning_rate": 1.1014648520391031e-05,
1395
+ "loss": 0.8694,
1396
+ "step": 197
1397
+ },
1398
+ {
1399
+ "epoch": 1.5683168316831684,
1400
+ "grad_norm": 0.38698513255681644,
1401
+ "learning_rate": 1.092268359463302e-05,
1402
+ "loss": 0.8895,
1403
+ "step": 198
1404
+ },
1405
+ {
1406
+ "epoch": 1.5762376237623763,
1407
+ "grad_norm": 0.3945257947528202,
1408
+ "learning_rate": 1.083063989329304e-05,
1409
+ "loss": 0.8437,
1410
+ "step": 199
1411
+ },
1412
+ {
1413
+ "epoch": 1.5841584158415842,
1414
+ "grad_norm": 0.38726772534551934,
1415
+ "learning_rate": 1.073852527474874e-05,
1416
+ "loss": 0.9063,
1417
+ "step": 200
1418
+ },
1419
+ {
1420
+ "epoch": 1.5920792079207922,
1421
+ "grad_norm": 0.3806123804826243,
1422
+ "learning_rate": 1.0646347603432443e-05,
1423
+ "loss": 0.8432,
1424
+ "step": 201
1425
+ },
1426
+ {
1427
+ "epoch": 1.6,
1428
+ "grad_norm": 0.39146660949081974,
1429
+ "learning_rate": 1.05541147491597e-05,
1430
+ "loss": 0.8676,
1431
+ "step": 202
1432
+ },
1433
+ {
1434
+ "epoch": 1.607920792079208,
1435
+ "grad_norm": 0.3845422288308008,
1436
+ "learning_rate": 1.0461834586457398e-05,
1437
+ "loss": 0.852,
1438
+ "step": 203
1439
+ },
1440
+ {
1441
+ "epoch": 1.615841584158416,
1442
+ "grad_norm": 0.3854898725988794,
1443
+ "learning_rate": 1.0369514993891451e-05,
1444
+ "loss": 0.8376,
1445
+ "step": 204
1446
+ },
1447
+ {
1448
+ "epoch": 1.6237623762376239,
1449
+ "grad_norm": 0.40353321866721364,
1450
+ "learning_rate": 1.0277163853394166e-05,
1451
+ "loss": 0.852,
1452
+ "step": 205
1453
+ },
1454
+ {
1455
+ "epoch": 1.6316831683168318,
1456
+ "grad_norm": 0.38444130174939833,
1457
+ "learning_rate": 1.01847890495913e-05,
1458
+ "loss": 0.889,
1459
+ "step": 206
1460
+ },
1461
+ {
1462
+ "epoch": 1.6396039603960397,
1463
+ "grad_norm": 0.38108640413144107,
1464
+ "learning_rate": 1.009239846912891e-05,
1465
+ "loss": 0.8359,
1466
+ "step": 207
1467
+ },
1468
+ {
1469
+ "epoch": 1.6475247524752477,
1470
+ "grad_norm": 0.4747347151817832,
1471
+ "learning_rate": 1e-05,
1472
+ "loss": 0.8865,
1473
+ "step": 208
1474
+ },
1475
+ {
1476
+ "epoch": 1.6554455445544556,
1477
+ "grad_norm": 0.40452870424857584,
1478
+ "learning_rate": 9.907601530871094e-06,
1479
+ "loss": 0.8253,
1480
+ "step": 209
1481
+ },
1482
+ {
1483
+ "epoch": 1.6633663366336635,
1484
+ "grad_norm": 0.38987399344119467,
1485
+ "learning_rate": 9.815210950408703e-06,
1486
+ "loss": 0.849,
1487
+ "step": 210
1488
+ },
1489
+ {
1490
+ "epoch": 1.6712871287128714,
1491
+ "grad_norm": 0.39493082174252364,
1492
+ "learning_rate": 9.722836146605838e-06,
1493
+ "loss": 0.8483,
1494
+ "step": 211
1495
+ },
1496
+ {
1497
+ "epoch": 1.6792079207920794,
1498
+ "grad_norm": 0.39165994965141043,
1499
+ "learning_rate": 9.630485006108554e-06,
1500
+ "loss": 0.8871,
1501
+ "step": 212
1502
+ },
1503
+ {
1504
+ "epoch": 1.6871287128712873,
1505
+ "grad_norm": 0.38092018061735106,
1506
+ "learning_rate": 9.538165413542607e-06,
1507
+ "loss": 0.8518,
1508
+ "step": 213
1509
+ },
1510
+ {
1511
+ "epoch": 1.695049504950495,
1512
+ "grad_norm": 0.3855485261645927,
1513
+ "learning_rate": 9.445885250840301e-06,
1514
+ "loss": 0.8356,
1515
+ "step": 214
1516
+ },
1517
+ {
1518
+ "epoch": 1.702970297029703,
1519
+ "grad_norm": 0.39414553727691437,
1520
+ "learning_rate": 9.353652396567558e-06,
1521
+ "loss": 0.8689,
1522
+ "step": 215
1523
+ },
1524
+ {
1525
+ "epoch": 1.7108910891089109,
1526
+ "grad_norm": 0.383608920878984,
1527
+ "learning_rate": 9.261474725251261e-06,
1528
+ "loss": 0.8462,
1529
+ "step": 216
1530
+ },
1531
+ {
1532
+ "epoch": 1.7188118811881188,
1533
+ "grad_norm": 0.37956984957800455,
1534
+ "learning_rate": 9.169360106706962e-06,
1535
+ "loss": 0.8636,
1536
+ "step": 217
1537
+ },
1538
+ {
1539
+ "epoch": 1.7267326732673267,
1540
+ "grad_norm": 0.3952521158053759,
1541
+ "learning_rate": 9.07731640536698e-06,
1542
+ "loss": 0.8371,
1543
+ "step": 218
1544
+ },
1545
+ {
1546
+ "epoch": 1.7346534653465346,
1547
+ "grad_norm": 0.39432968092671433,
1548
+ "learning_rate": 8.985351479608972e-06,
1549
+ "loss": 0.8686,
1550
+ "step": 219
1551
+ },
1552
+ {
1553
+ "epoch": 1.7425742574257426,
1554
+ "grad_norm": 0.4091695075116408,
1555
+ "learning_rate": 8.893473181084993e-06,
1556
+ "loss": 0.8854,
1557
+ "step": 220
1558
+ },
1559
+ {
1560
+ "epoch": 1.7504950495049505,
1561
+ "grad_norm": 0.38879198281346644,
1562
+ "learning_rate": 8.80168935405117e-06,
1563
+ "loss": 0.8258,
1564
+ "step": 221
1565
+ },
1566
+ {
1567
+ "epoch": 1.7584158415841584,
1568
+ "grad_norm": 0.3787674450951966,
1569
+ "learning_rate": 8.71000783469797e-06,
1570
+ "loss": 0.8577,
1571
+ "step": 222
1572
+ },
1573
+ {
1574
+ "epoch": 1.7663366336633664,
1575
+ "grad_norm": 0.4140574481556825,
1576
+ "learning_rate": 8.618436450481182e-06,
1577
+ "loss": 0.8717,
1578
+ "step": 223
1579
+ },
1580
+ {
1581
+ "epoch": 1.7742574257425743,
1582
+ "grad_norm": 0.3816315351422027,
1583
+ "learning_rate": 8.526983019453624e-06,
1584
+ "loss": 0.8328,
1585
+ "step": 224
1586
+ },
1587
+ {
1588
+ "epoch": 1.7821782178217822,
1589
+ "grad_norm": 0.3778129363378664,
1590
+ "learning_rate": 8.43565534959769e-06,
1591
+ "loss": 0.8625,
1592
+ "step": 225
1593
+ },
1594
+ {
1595
+ "epoch": 1.7900990099009901,
1596
+ "grad_norm": 0.39307248999316513,
1597
+ "learning_rate": 8.3444612381587e-06,
1598
+ "loss": 0.8472,
1599
+ "step": 226
1600
+ },
1601
+ {
1602
+ "epoch": 1.798019801980198,
1603
+ "grad_norm": 0.567116321231214,
1604
+ "learning_rate": 8.253408470979212e-06,
1605
+ "loss": 0.8435,
1606
+ "step": 227
1607
+ },
1608
+ {
1609
+ "epoch": 1.805940594059406,
1610
+ "grad_norm": 0.3826967696218752,
1611
+ "learning_rate": 8.162504821834296e-06,
1612
+ "loss": 0.8287,
1613
+ "step": 228
1614
+ },
1615
+ {
1616
+ "epoch": 1.8138613861386137,
1617
+ "grad_norm": 0.4031524752294553,
1618
+ "learning_rate": 8.071758051767833e-06,
1619
+ "loss": 0.8372,
1620
+ "step": 229
1621
+ },
1622
+ {
1623
+ "epoch": 1.8217821782178216,
1624
+ "grad_norm": 0.38474330971078624,
1625
+ "learning_rate": 7.9811759084299e-06,
1626
+ "loss": 0.8722,
1627
+ "step": 230
1628
+ },
1629
+ {
1630
+ "epoch": 1.8297029702970296,
1631
+ "grad_norm": 0.3835735801490187,
1632
+ "learning_rate": 7.890766125415304e-06,
1633
+ "loss": 0.9066,
1634
+ "step": 231
1635
+ },
1636
+ {
1637
+ "epoch": 1.8376237623762375,
1638
+ "grad_norm": 0.4060540049015593,
1639
+ "learning_rate": 7.800536421603317e-06,
1640
+ "loss": 0.8252,
1641
+ "step": 232
1642
+ },
1643
+ {
1644
+ "epoch": 1.8455445544554454,
1645
+ "grad_norm": 0.386875601730567,
1646
+ "learning_rate": 7.710494500498662e-06,
1647
+ "loss": 0.8643,
1648
+ "step": 233
1649
+ },
1650
+ {
1651
+ "epoch": 1.8534653465346533,
1652
+ "grad_norm": 0.38667621959177934,
1653
+ "learning_rate": 7.620648049573815e-06,
1654
+ "loss": 0.857,
1655
+ "step": 234
1656
+ },
1657
+ {
1658
+ "epoch": 1.8613861386138613,
1659
+ "grad_norm": 0.38808086535439623,
1660
+ "learning_rate": 7.531004739612668e-06,
1661
+ "loss": 0.846,
1662
+ "step": 235
1663
+ },
1664
+ {
1665
+ "epoch": 1.8693069306930692,
1666
+ "grad_norm": 0.3980360267748509,
1667
+ "learning_rate": 7.441572224055644e-06,
1668
+ "loss": 0.8394,
1669
+ "step": 236
1670
+ },
1671
+ {
1672
+ "epoch": 1.8772277227722771,
1673
+ "grad_norm": 0.38040890589313575,
1674
+ "learning_rate": 7.352358138346241e-06,
1675
+ "loss": 0.8321,
1676
+ "step": 237
1677
+ },
1678
+ {
1679
+ "epoch": 1.885148514851485,
1680
+ "grad_norm": 0.36846374610523613,
1681
+ "learning_rate": 7.263370099279173e-06,
1682
+ "loss": 0.8497,
1683
+ "step": 238
1684
+ },
1685
+ {
1686
+ "epoch": 1.893069306930693,
1687
+ "grad_norm": 0.3864744771519634,
1688
+ "learning_rate": 7.17461570435005e-06,
1689
+ "loss": 0.8568,
1690
+ "step": 239
1691
+ },
1692
+ {
1693
+ "epoch": 1.900990099009901,
1694
+ "grad_norm": 0.4061916523025884,
1695
+ "learning_rate": 7.086102531106755e-06,
1696
+ "loss": 0.9014,
1697
+ "step": 240
1698
+ },
1699
+ {
1700
+ "epoch": 1.9089108910891088,
1701
+ "grad_norm": 0.4041879159841448,
1702
+ "learning_rate": 6.997838136502474e-06,
1703
+ "loss": 0.8792,
1704
+ "step": 241
1705
+ },
1706
+ {
1707
+ "epoch": 1.9168316831683168,
1708
+ "grad_norm": 0.42210348978875756,
1709
+ "learning_rate": 6.909830056250527e-06,
1710
+ "loss": 0.8597,
1711
+ "step": 242
1712
+ },
1713
+ {
1714
+ "epoch": 1.9247524752475247,
1715
+ "grad_norm": 0.3878637842247315,
1716
+ "learning_rate": 6.822085804180985e-06,
1717
+ "loss": 0.889,
1718
+ "step": 243
1719
+ },
1720
+ {
1721
+ "epoch": 1.9326732673267326,
1722
+ "grad_norm": 0.3903220656513824,
1723
+ "learning_rate": 6.734612871599169e-06,
1724
+ "loss": 0.8518,
1725
+ "step": 244
1726
+ },
1727
+ {
1728
+ "epoch": 1.9405940594059405,
1729
+ "grad_norm": 0.38140916668736696,
1730
+ "learning_rate": 6.647418726646065e-06,
1731
+ "loss": 0.8664,
1732
+ "step": 245
1733
+ },
1734
+ {
1735
+ "epoch": 1.9485148514851485,
1736
+ "grad_norm": 0.37076093981349967,
1737
+ "learning_rate": 6.560510813660719e-06,
1738
+ "loss": 0.8115,
1739
+ "step": 246
1740
+ },
1741
+ {
1742
+ "epoch": 1.9564356435643564,
1743
+ "grad_norm": 0.38782683714399413,
1744
+ "learning_rate": 6.473896552544674e-06,
1745
+ "loss": 0.8616,
1746
+ "step": 247
1747
+ },
1748
+ {
1749
+ "epoch": 1.9643564356435643,
1750
+ "grad_norm": 0.3806774040873917,
1751
+ "learning_rate": 6.387583338128471e-06,
1752
+ "loss": 0.8547,
1753
+ "step": 248
1754
+ },
1755
+ {
1756
+ "epoch": 1.9722772277227723,
1757
+ "grad_norm": 0.39269059714326215,
1758
+ "learning_rate": 6.30157853954031e-06,
1759
+ "loss": 0.8466,
1760
+ "step": 249
1761
+ },
1762
+ {
1763
+ "epoch": 1.9801980198019802,
1764
+ "grad_norm": 0.3887611447725159,
1765
+ "learning_rate": 6.215889499576898e-06,
1766
+ "loss": 0.8347,
1767
+ "step": 250
1768
+ },
1769
+ {
1770
+ "epoch": 1.988118811881188,
1771
+ "grad_norm": 0.3776184815702374,
1772
+ "learning_rate": 6.130523534076549e-06,
1773
+ "loss": 0.8313,
1774
+ "step": 251
1775
+ },
1776
+ {
1777
+ "epoch": 1.996039603960396,
1778
+ "grad_norm": 0.39378215320119175,
1779
+ "learning_rate": 6.0454879312945755e-06,
1780
+ "loss": 0.869,
1781
+ "step": 252
1782
+ },
1783
+ {
1784
+ "epoch": 1.996039603960396,
1785
+ "eval_loss": 1.002571702003479,
1786
+ "eval_runtime": 88.5175,
1787
+ "eval_samples_per_second": 3.005,
1788
+ "eval_steps_per_second": 0.192,
1789
+ "step": 252
1790
+ },
1791
+ {
1792
+ "epoch": 2.003960396039604,
1793
+ "grad_norm": 0.576420587207012,
1794
+ "learning_rate": 5.960789951281052e-06,
1795
+ "loss": 0.7911,
1796
+ "step": 253
1797
+ },
1798
+ {
1799
+ "epoch": 2.011881188118812,
1800
+ "grad_norm": 0.781752019713,
1801
+ "learning_rate": 5.876436825260967e-06,
1802
+ "loss": 0.7259,
1803
+ "step": 254
1804
+ },
1805
+ {
1806
+ "epoch": 2.01980198019802,
1807
+ "grad_norm": 0.6274336393038759,
1808
+ "learning_rate": 5.7924357550168534e-06,
1809
+ "loss": 0.7553,
1810
+ "step": 255
1811
+ },
1812
+ {
1813
+ "epoch": 2.0277227722772277,
1814
+ "grad_norm": 0.638695579314472,
1815
+ "learning_rate": 5.708793912273911e-06,
1816
+ "loss": 0.7508,
1817
+ "step": 256
1818
+ },
1819
+ {
1820
+ "epoch": 2.0356435643564357,
1821
+ "grad_norm": 0.708507864502287,
1822
+ "learning_rate": 5.625518438087738e-06,
1823
+ "loss": 0.7477,
1824
+ "step": 257
1825
+ },
1826
+ {
1827
+ "epoch": 2.0435643564356436,
1828
+ "grad_norm": 0.5492723143519291,
1829
+ "learning_rate": 5.542616442234618e-06,
1830
+ "loss": 0.7429,
1831
+ "step": 258
1832
+ },
1833
+ {
1834
+ "epoch": 2.0514851485148515,
1835
+ "grad_norm": 0.6026775840172064,
1836
+ "learning_rate": 5.460095002604533e-06,
1837
+ "loss": 0.7175,
1838
+ "step": 259
1839
+ },
1840
+ {
1841
+ "epoch": 2.0594059405940595,
1842
+ "grad_norm": 0.6699241593183407,
1843
+ "learning_rate": 5.3779611645968696e-06,
1844
+ "loss": 0.7093,
1845
+ "step": 260
1846
+ },
1847
+ {
1848
+ "epoch": 2.0673267326732674,
1849
+ "grad_norm": 0.5343067117420846,
1850
+ "learning_rate": 5.296221940518908e-06,
1851
+ "loss": 0.7232,
1852
+ "step": 261
1853
+ },
1854
+ {
1855
+ "epoch": 2.0752475247524753,
1856
+ "grad_norm": 0.4911057371956158,
1857
+ "learning_rate": 5.214884308987136e-06,
1858
+ "loss": 0.7802,
1859
+ "step": 262
1860
+ },
1861
+ {
1862
+ "epoch": 2.0831683168316832,
1863
+ "grad_norm": 0.5433218831841199,
1864
+ "learning_rate": 5.133955214331439e-06,
1865
+ "loss": 0.7053,
1866
+ "step": 263
1867
+ },
1868
+ {
1869
+ "epoch": 2.091089108910891,
1870
+ "grad_norm": 0.5400653655431835,
1871
+ "learning_rate": 5.053441566002214e-06,
1872
+ "loss": 0.7098,
1873
+ "step": 264
1874
+ },
1875
+ {
1876
+ "epoch": 2.099009900990099,
1877
+ "grad_norm": 0.4898471275769769,
1878
+ "learning_rate": 4.973350237980466e-06,
1879
+ "loss": 0.739,
1880
+ "step": 265
1881
+ },
1882
+ {
1883
+ "epoch": 2.106930693069307,
1884
+ "grad_norm": 0.4939480668131728,
1885
+ "learning_rate": 4.893688068190933e-06,
1886
+ "loss": 0.7255,
1887
+ "step": 266
1888
+ },
1889
+ {
1890
+ "epoch": 2.114851485148515,
1891
+ "grad_norm": 0.5066963493135274,
1892
+ "learning_rate": 4.814461857918279e-06,
1893
+ "loss": 0.7502,
1894
+ "step": 267
1895
+ },
1896
+ {
1897
+ "epoch": 2.122772277227723,
1898
+ "grad_norm": 0.5064134093537243,
1899
+ "learning_rate": 4.7356783712264405e-06,
1900
+ "loss": 0.7113,
1901
+ "step": 268
1902
+ },
1903
+ {
1904
+ "epoch": 2.130693069306931,
1905
+ "grad_norm": 0.4224734666377468,
1906
+ "learning_rate": 4.657344334381116e-06,
1907
+ "loss": 0.7215,
1908
+ "step": 269
1909
+ },
1910
+ {
1911
+ "epoch": 2.1386138613861387,
1912
+ "grad_norm": 0.459279750043329,
1913
+ "learning_rate": 4.579466435275506e-06,
1914
+ "loss": 0.7407,
1915
+ "step": 270
1916
+ },
1917
+ {
1918
+ "epoch": 2.1465346534653467,
1919
+ "grad_norm": 0.46742630810280705,
1920
+ "learning_rate": 4.5020513228593275e-06,
1921
+ "loss": 0.6973,
1922
+ "step": 271
1923
+ },
1924
+ {
1925
+ "epoch": 2.1544554455445546,
1926
+ "grad_norm": 0.4943363620760823,
1927
+ "learning_rate": 4.425105606571145e-06,
1928
+ "loss": 0.7338,
1929
+ "step": 272
1930
+ },
1931
+ {
1932
+ "epoch": 2.1623762376237625,
1933
+ "grad_norm": 0.433433891249229,
1934
+ "learning_rate": 4.348635855774082e-06,
1935
+ "loss": 0.721,
1936
+ "step": 273
1937
+ },
1938
+ {
1939
+ "epoch": 2.1702970297029704,
1940
+ "grad_norm": 0.44511761437854985,
1941
+ "learning_rate": 4.272648599194948e-06,
1942
+ "loss": 0.7183,
1943
+ "step": 274
1944
+ },
1945
+ {
1946
+ "epoch": 2.1782178217821784,
1947
+ "grad_norm": 0.4758876220892502,
1948
+ "learning_rate": 4.197150324366844e-06,
1949
+ "loss": 0.6928,
1950
+ "step": 275
1951
+ },
1952
+ {
1953
+ "epoch": 2.1861386138613863,
1954
+ "grad_norm": 0.49467814256335324,
1955
+ "learning_rate": 4.12214747707527e-06,
1956
+ "loss": 0.7151,
1957
+ "step": 276
1958
+ },
1959
+ {
1960
+ "epoch": 2.1940594059405942,
1961
+ "grad_norm": 0.4332527533958727,
1962
+ "learning_rate": 4.047646460807814e-06,
1963
+ "loss": 0.7231,
1964
+ "step": 277
1965
+ },
1966
+ {
1967
+ "epoch": 2.201980198019802,
1968
+ "grad_norm": 0.4341696748234564,
1969
+ "learning_rate": 3.973653636207437e-06,
1970
+ "loss": 0.7161,
1971
+ "step": 278
1972
+ },
1973
+ {
1974
+ "epoch": 2.20990099009901,
1975
+ "grad_norm": 0.4892958618243702,
1976
+ "learning_rate": 3.9001753205294335e-06,
1977
+ "loss": 0.7385,
1978
+ "step": 279
1979
+ },
1980
+ {
1981
+ "epoch": 2.217821782178218,
1982
+ "grad_norm": 0.42779412099186476,
1983
+ "learning_rate": 3.827217787102072e-06,
1984
+ "loss": 0.6949,
1985
+ "step": 280
1986
+ },
1987
+ {
1988
+ "epoch": 2.225742574257426,
1989
+ "grad_norm": 0.43010675128621945,
1990
+ "learning_rate": 3.754787264791011e-06,
1991
+ "loss": 0.7279,
1992
+ "step": 281
1993
+ },
1994
+ {
1995
+ "epoch": 2.233663366336634,
1996
+ "grad_norm": 0.4189623315492079,
1997
+ "learning_rate": 3.6828899374674933e-06,
1998
+ "loss": 0.7151,
1999
+ "step": 282
2000
+ },
2001
+ {
2002
+ "epoch": 2.241584158415842,
2003
+ "grad_norm": 0.4283610207819412,
2004
+ "learning_rate": 3.6115319434803897e-06,
2005
+ "loss": 0.767,
2006
+ "step": 283
2007
+ },
2008
+ {
2009
+ "epoch": 2.2495049504950497,
2010
+ "grad_norm": 0.4344389534943353,
2011
+ "learning_rate": 3.540719375132129e-06,
2012
+ "loss": 0.7271,
2013
+ "step": 284
2014
+ },
2015
+ {
2016
+ "epoch": 2.2574257425742577,
2017
+ "grad_norm": 0.4361317858889359,
2018
+ "learning_rate": 3.4704582781585596e-06,
2019
+ "loss": 0.7248,
2020
+ "step": 285
2021
+ },
2022
+ {
2023
+ "epoch": 2.2653465346534656,
2024
+ "grad_norm": 0.43728115762338654,
2025
+ "learning_rate": 3.4007546512127764e-06,
2026
+ "loss": 0.7231,
2027
+ "step": 286
2028
+ },
2029
+ {
2030
+ "epoch": 2.2732673267326735,
2031
+ "grad_norm": 0.4264346314477906,
2032
+ "learning_rate": 3.3316144453529897e-06,
2033
+ "loss": 0.7265,
2034
+ "step": 287
2035
+ },
2036
+ {
2037
+ "epoch": 2.2811881188118814,
2038
+ "grad_norm": 0.4328763606745891,
2039
+ "learning_rate": 3.2630435635344283e-06,
2040
+ "loss": 0.726,
2041
+ "step": 288
2042
+ },
2043
+ {
2044
+ "epoch": 2.289108910891089,
2045
+ "grad_norm": 0.40543132963978806,
2046
+ "learning_rate": 3.1950478601053847e-06,
2047
+ "loss": 0.7226,
2048
+ "step": 289
2049
+ },
2050
+ {
2051
+ "epoch": 2.297029702970297,
2052
+ "grad_norm": 0.40808543584405227,
2053
+ "learning_rate": 3.1276331403073733e-06,
2054
+ "loss": 0.6789,
2055
+ "step": 290
2056
+ },
2057
+ {
2058
+ "epoch": 2.3049504950495048,
2059
+ "grad_norm": 0.40839769173881413,
2060
+ "learning_rate": 3.0608051597795043e-06,
2061
+ "loss": 0.7187,
2062
+ "step": 291
2063
+ },
2064
+ {
2065
+ "epoch": 2.3128712871287127,
2066
+ "grad_norm": 0.4369573292307265,
2067
+ "learning_rate": 2.9945696240670905e-06,
2068
+ "loss": 0.7301,
2069
+ "step": 292
2070
+ },
2071
+ {
2072
+ "epoch": 2.3207920792079206,
2073
+ "grad_norm": 0.40752917080947654,
2074
+ "learning_rate": 2.9289321881345257e-06,
2075
+ "loss": 0.7371,
2076
+ "step": 293
2077
+ },
2078
+ {
2079
+ "epoch": 2.3287128712871286,
2080
+ "grad_norm": 0.40681720921863107,
2081
+ "learning_rate": 2.8638984558824777e-06,
2082
+ "loss": 0.7053,
2083
+ "step": 294
2084
+ },
2085
+ {
2086
+ "epoch": 2.3366336633663365,
2087
+ "grad_norm": 0.39704090696075117,
2088
+ "learning_rate": 2.799473979669456e-06,
2089
+ "loss": 0.7222,
2090
+ "step": 295
2091
+ },
2092
+ {
2093
+ "epoch": 2.3445544554455444,
2094
+ "grad_norm": 0.4127972906314945,
2095
+ "learning_rate": 2.7356642598377604e-06,
2096
+ "loss": 0.7227,
2097
+ "step": 296
2098
+ },
2099
+ {
2100
+ "epoch": 2.3524752475247523,
2101
+ "grad_norm": 0.40247162704682216,
2102
+ "learning_rate": 2.672474744243888e-06,
2103
+ "loss": 0.7178,
2104
+ "step": 297
2105
+ },
2106
+ {
2107
+ "epoch": 2.3603960396039603,
2108
+ "grad_norm": 0.4070193008615235,
2109
+ "learning_rate": 2.6099108277934105e-06,
2110
+ "loss": 0.7164,
2111
+ "step": 298
2112
+ },
2113
+ {
2114
+ "epoch": 2.368316831683168,
2115
+ "grad_norm": 0.3958026290470292,
2116
+ "learning_rate": 2.547977851980373e-06,
2117
+ "loss": 0.7226,
2118
+ "step": 299
2119
+ },
2120
+ {
2121
+ "epoch": 2.376237623762376,
2122
+ "grad_norm": 0.414324012823234,
2123
+ "learning_rate": 2.4866811044312667e-06,
2124
+ "loss": 0.722,
2125
+ "step": 300
2126
+ },
2127
+ {
2128
+ "epoch": 2.384158415841584,
2129
+ "grad_norm": 0.3924655139400483,
2130
+ "learning_rate": 2.426025818453572e-06,
2131
+ "loss": 0.6922,
2132
+ "step": 301
2133
+ },
2134
+ {
2135
+ "epoch": 2.392079207920792,
2136
+ "grad_norm": 0.39324797222146385,
2137
+ "learning_rate": 2.3660171725889703e-06,
2138
+ "loss": 0.7168,
2139
+ "step": 302
2140
+ },
2141
+ {
2142
+ "epoch": 2.4,
2143
+ "grad_norm": 0.4018290113845056,
2144
+ "learning_rate": 2.306660290171211e-06,
2145
+ "loss": 0.7058,
2146
+ "step": 303
2147
+ },
2148
+ {
2149
+ "epoch": 2.407920792079208,
2150
+ "grad_norm": 0.4186975177176807,
2151
+ "learning_rate": 2.2479602388887013e-06,
2152
+ "loss": 0.7308,
2153
+ "step": 304
2154
+ },
2155
+ {
2156
+ "epoch": 2.4158415841584158,
2157
+ "grad_norm": 0.41697995471077964,
2158
+ "learning_rate": 2.1899220303518465e-06,
2159
+ "loss": 0.7428,
2160
+ "step": 305
2161
+ },
2162
+ {
2163
+ "epoch": 2.4237623762376237,
2164
+ "grad_norm": 0.4024605920230618,
2165
+ "learning_rate": 2.132550619665168e-06,
2166
+ "loss": 0.6937,
2167
+ "step": 306
2168
+ },
2169
+ {
2170
+ "epoch": 2.4316831683168316,
2171
+ "grad_norm": 0.415257008654532,
2172
+ "learning_rate": 2.075850905004262e-06,
2173
+ "loss": 0.7351,
2174
+ "step": 307
2175
+ },
2176
+ {
2177
+ "epoch": 2.4396039603960396,
2178
+ "grad_norm": 0.40407977073992135,
2179
+ "learning_rate": 2.019827727197605e-06,
2180
+ "loss": 0.7028,
2181
+ "step": 308
2182
+ },
2183
+ {
2184
+ "epoch": 2.4475247524752475,
2185
+ "grad_norm": 0.3935541096805544,
2186
+ "learning_rate": 1.9644858693132627e-06,
2187
+ "loss": 0.7073,
2188
+ "step": 309
2189
+ },
2190
+ {
2191
+ "epoch": 2.4554455445544554,
2192
+ "grad_norm": 0.40998948849676764,
2193
+ "learning_rate": 1.9098300562505266e-06,
2194
+ "loss": 0.7084,
2195
+ "step": 310
2196
+ },
2197
+ {
2198
+ "epoch": 2.4633663366336633,
2199
+ "grad_norm": 0.4064763838316956,
2200
+ "learning_rate": 1.855864954336517e-06,
2201
+ "loss": 0.7541,
2202
+ "step": 311
2203
+ },
2204
+ {
2205
+ "epoch": 2.4712871287128713,
2206
+ "grad_norm": 0.40702963715268836,
2207
+ "learning_rate": 1.80259517092779e-06,
2208
+ "loss": 0.7118,
2209
+ "step": 312
2210
+ },
2211
+ {
2212
+ "epoch": 2.479207920792079,
2213
+ "grad_norm": 0.40962380739362325,
2214
+ "learning_rate": 1.7500252540169782e-06,
2215
+ "loss": 0.7149,
2216
+ "step": 313
2217
+ },
2218
+ {
2219
+ "epoch": 2.487128712871287,
2220
+ "grad_norm": 0.4225405507530112,
2221
+ "learning_rate": 1.6981596918444953e-06,
2222
+ "loss": 0.7097,
2223
+ "step": 314
2224
+ },
2225
+ {
2226
+ "epoch": 2.495049504950495,
2227
+ "grad_norm": 0.3974259872963068,
2228
+ "learning_rate": 1.6470029125153463e-06,
2229
+ "loss": 0.7468,
2230
+ "step": 315
2231
+ },
2232
+ {
2233
+ "epoch": 2.502970297029703,
2234
+ "grad_norm": 0.4075694075831413,
2235
+ "learning_rate": 1.596559283621074e-06,
2236
+ "loss": 0.7223,
2237
+ "step": 316
2238
+ },
2239
+ {
2240
+ "epoch": 2.510891089108911,
2241
+ "grad_norm": 0.4032028821038701,
2242
+ "learning_rate": 1.5468331118668655e-06,
2243
+ "loss": 0.7233,
2244
+ "step": 317
2245
+ },
2246
+ {
2247
+ "epoch": 2.518811881188119,
2248
+ "grad_norm": 0.3984358554986335,
2249
+ "learning_rate": 1.4978286427038602e-06,
2250
+ "loss": 0.7163,
2251
+ "step": 318
2252
+ },
2253
+ {
2254
+ "epoch": 2.5267326732673268,
2255
+ "grad_norm": 0.39826123904027727,
2256
+ "learning_rate": 1.44955005996669e-06,
2257
+ "loss": 0.7174,
2258
+ "step": 319
2259
+ },
2260
+ {
2261
+ "epoch": 2.5346534653465347,
2262
+ "grad_norm": 0.40725326569026266,
2263
+ "learning_rate": 1.4020014855162755e-06,
2264
+ "loss": 0.7112,
2265
+ "step": 320
2266
+ },
2267
+ {
2268
+ "epoch": 2.5425742574257426,
2269
+ "grad_norm": 0.39814818108116296,
2270
+ "learning_rate": 1.3551869788879213e-06,
2271
+ "loss": 0.7301,
2272
+ "step": 321
2273
+ },
2274
+ {
2275
+ "epoch": 2.5504950495049505,
2276
+ "grad_norm": 0.39471994779707076,
2277
+ "learning_rate": 1.3091105369447166e-06,
2278
+ "loss": 0.7092,
2279
+ "step": 322
2280
+ },
2281
+ {
2282
+ "epoch": 2.5584158415841585,
2283
+ "grad_norm": 0.4165929129276557,
2284
+ "learning_rate": 1.2637760935363053e-06,
2285
+ "loss": 0.7131,
2286
+ "step": 323
2287
+ },
2288
+ {
2289
+ "epoch": 2.5663366336633664,
2290
+ "grad_norm": 0.40067988266060006,
2291
+ "learning_rate": 1.2191875191630209e-06,
2292
+ "loss": 0.7242,
2293
+ "step": 324
2294
+ },
2295
+ {
2296
+ "epoch": 2.5742574257425743,
2297
+ "grad_norm": 0.4150381954280917,
2298
+ "learning_rate": 1.1753486206454433e-06,
2299
+ "loss": 0.7402,
2300
+ "step": 325
2301
+ },
2302
+ {
2303
+ "epoch": 2.5821782178217823,
2304
+ "grad_norm": 0.3920384804019307,
2305
+ "learning_rate": 1.132263140799381e-06,
2306
+ "loss": 0.7105,
2307
+ "step": 326
2308
+ },
2309
+ {
2310
+ "epoch": 2.59009900990099,
2311
+ "grad_norm": 0.3987176952287612,
2312
+ "learning_rate": 1.0899347581163222e-06,
2313
+ "loss": 0.7144,
2314
+ "step": 327
2315
+ },
2316
+ {
2317
+ "epoch": 2.598019801980198,
2318
+ "grad_norm": 0.41078279785040733,
2319
+ "learning_rate": 1.0483670864493777e-06,
2320
+ "loss": 0.7249,
2321
+ "step": 328
2322
+ },
2323
+ {
2324
+ "epoch": 2.605940594059406,
2325
+ "grad_norm": 0.4040238292412966,
2326
+ "learning_rate": 1.0075636747047446e-06,
2327
+ "loss": 0.7272,
2328
+ "step": 329
2329
+ },
2330
+ {
2331
+ "epoch": 2.613861386138614,
2332
+ "grad_norm": 0.43047282777392387,
2333
+ "learning_rate": 9.675280065387117e-07,
2334
+ "loss": 0.7433,
2335
+ "step": 330
2336
+ },
2337
+ {
2338
+ "epoch": 2.621782178217822,
2339
+ "grad_norm": 0.3922293398745348,
2340
+ "learning_rate": 9.282635000602346e-07,
2341
+ "loss": 0.7071,
2342
+ "step": 331
2343
+ },
2344
+ {
2345
+ "epoch": 2.62970297029703,
2346
+ "grad_norm": 0.41685890998877895,
2347
+ "learning_rate": 8.897735075391156e-07,
2348
+ "loss": 0.7435,
2349
+ "step": 332
2350
+ },
2351
+ {
2352
+ "epoch": 2.6376237623762377,
2353
+ "grad_norm": 0.4060427125681242,
2354
+ "learning_rate": 8.520613151197899e-07,
2355
+ "loss": 0.7065,
2356
+ "step": 333
2357
+ },
2358
+ {
2359
+ "epoch": 2.6455445544554457,
2360
+ "grad_norm": 0.3975045499192803,
2361
+ "learning_rate": 8.151301425407699e-07,
2362
+ "loss": 0.7324,
2363
+ "step": 334
2364
+ },
2365
+ {
2366
+ "epoch": 2.6534653465346536,
2367
+ "grad_norm": 0.39196801398755104,
2368
+ "learning_rate": 7.78983142859755e-07,
2369
+ "loss": 0.714,
2370
+ "step": 335
2371
+ },
2372
+ {
2373
+ "epoch": 2.6613861386138615,
2374
+ "grad_norm": 0.3956193577383561,
2375
+ "learning_rate": 7.43623402184438e-07,
2376
+ "loss": 0.7276,
2377
+ "step": 336
2378
+ },
2379
+ {
2380
+ "epoch": 2.6693069306930695,
2381
+ "grad_norm": 0.3990830893440769,
2382
+ "learning_rate": 7.090539394090135e-07,
2383
+ "loss": 0.7247,
2384
+ "step": 337
2385
+ },
2386
+ {
2387
+ "epoch": 2.6772277227722774,
2388
+ "grad_norm": 0.3930307996524001,
2389
+ "learning_rate": 6.752777059564431e-07,
2390
+ "loss": 0.6925,
2391
+ "step": 338
2392
+ },
2393
+ {
2394
+ "epoch": 2.6851485148514853,
2395
+ "grad_norm": 0.41056613538755815,
2396
+ "learning_rate": 6.422975855264757e-07,
2397
+ "loss": 0.7119,
2398
+ "step": 339
2399
+ },
2400
+ {
2401
+ "epoch": 2.693069306930693,
2402
+ "grad_norm": 0.5308864436453282,
2403
+ "learning_rate": 6.101163938494359e-07,
2404
+ "loss": 0.6739,
2405
+ "step": 340
2406
+ },
2407
+ {
2408
+ "epoch": 2.7009900990099007,
2409
+ "grad_norm": 0.3970396905428287,
2410
+ "learning_rate": 5.78736878445837e-07,
2411
+ "loss": 0.6944,
2412
+ "step": 341
2413
+ },
2414
+ {
2415
+ "epoch": 2.7089108910891087,
2416
+ "grad_norm": 0.40116648564130203,
2417
+ "learning_rate": 5.481617183918053e-07,
2418
+ "loss": 0.6752,
2419
+ "step": 342
2420
+ },
2421
+ {
2422
+ "epoch": 2.7168316831683166,
2423
+ "grad_norm": 0.4288212628472651,
2424
+ "learning_rate": 5.183935240903415e-07,
2425
+ "loss": 0.7268,
2426
+ "step": 343
2427
+ },
2428
+ {
2429
+ "epoch": 2.7247524752475245,
2430
+ "grad_norm": 0.4018223127502873,
2431
+ "learning_rate": 4.894348370484648e-07,
2432
+ "loss": 0.7069,
2433
+ "step": 344
2434
+ },
2435
+ {
2436
+ "epoch": 2.7326732673267324,
2437
+ "grad_norm": 0.45512141312553184,
2438
+ "learning_rate": 4.6128812966021894e-07,
2439
+ "loss": 0.7236,
2440
+ "step": 345
2441
+ },
2442
+ {
2443
+ "epoch": 2.7405940594059404,
2444
+ "grad_norm": 0.40647740230337975,
2445
+ "learning_rate": 4.3395580499559276e-07,
2446
+ "loss": 0.7056,
2447
+ "step": 346
2448
+ },
2449
+ {
2450
+ "epoch": 2.7485148514851483,
2451
+ "grad_norm": 0.7851062640103578,
2452
+ "learning_rate": 4.0744019659535116e-07,
2453
+ "loss": 0.7191,
2454
+ "step": 347
2455
+ },
2456
+ {
2457
+ "epoch": 2.756435643564356,
2458
+ "grad_norm": 0.3918292935567612,
2459
+ "learning_rate": 3.817435682718096e-07,
2460
+ "loss": 0.7331,
2461
+ "step": 348
2462
+ },
2463
+ {
2464
+ "epoch": 2.764356435643564,
2465
+ "grad_norm": 0.40947897586494714,
2466
+ "learning_rate": 3.5686811391555164e-07,
2467
+ "loss": 0.6874,
2468
+ "step": 349
2469
+ },
2470
+ {
2471
+ "epoch": 2.772277227722772,
2472
+ "grad_norm": 0.3980289846234701,
2473
+ "learning_rate": 3.328159573081258e-07,
2474
+ "loss": 0.7299,
2475
+ "step": 350
2476
+ },
2477
+ {
2478
+ "epoch": 2.78019801980198,
2479
+ "grad_norm": 0.3883876533346389,
2480
+ "learning_rate": 3.095891519407246e-07,
2481
+ "loss": 0.705,
2482
+ "step": 351
2483
+ },
2484
+ {
2485
+ "epoch": 2.788118811881188,
2486
+ "grad_norm": 0.4021695381629565,
2487
+ "learning_rate": 2.871896808388608e-07,
2488
+ "loss": 0.7105,
2489
+ "step": 352
2490
+ },
2491
+ {
2492
+ "epoch": 2.796039603960396,
2493
+ "grad_norm": 0.40524014008780573,
2494
+ "learning_rate": 2.656194563930714e-07,
2495
+ "loss": 0.6829,
2496
+ "step": 353
2497
+ },
2498
+ {
2499
+ "epoch": 2.803960396039604,
2500
+ "grad_norm": 0.400098347999415,
2501
+ "learning_rate": 2.44880320195634e-07,
2502
+ "loss": 0.7134,
2503
+ "step": 354
2504
+ },
2505
+ {
2506
+ "epoch": 2.8118811881188117,
2507
+ "grad_norm": 0.39959879213796157,
2508
+ "learning_rate": 2.2497404288334245e-07,
2509
+ "loss": 0.7349,
2510
+ "step": 355
2511
+ },
2512
+ {
2513
+ "epoch": 2.8198019801980196,
2514
+ "grad_norm": 0.404829435915328,
2515
+ "learning_rate": 2.0590232398634114e-07,
2516
+ "loss": 0.7224,
2517
+ "step": 356
2518
+ },
2519
+ {
2520
+ "epoch": 2.8277227722772276,
2521
+ "grad_norm": 0.3988593166231128,
2522
+ "learning_rate": 1.876667917830155e-07,
2523
+ "loss": 0.7137,
2524
+ "step": 357
2525
+ },
2526
+ {
2527
+ "epoch": 2.8356435643564355,
2528
+ "grad_norm": 0.39999015184518205,
2529
+ "learning_rate": 1.7026900316098217e-07,
2530
+ "loss": 0.7214,
2531
+ "step": 358
2532
+ },
2533
+ {
2534
+ "epoch": 2.8435643564356434,
2535
+ "grad_norm": 0.40532384840797636,
2536
+ "learning_rate": 1.537104434841641e-07,
2537
+ "loss": 0.7403,
2538
+ "step": 359
2539
+ },
2540
+ {
2541
+ "epoch": 2.8514851485148514,
2542
+ "grad_norm": 0.4072129955656424,
2543
+ "learning_rate": 1.3799252646597428e-07,
2544
+ "loss": 0.7525,
2545
+ "step": 360
2546
+ },
2547
+ {
2548
+ "epoch": 2.8594059405940593,
2549
+ "grad_norm": 0.4081067652201019,
2550
+ "learning_rate": 1.231165940486234e-07,
2551
+ "loss": 0.7119,
2552
+ "step": 361
2553
+ },
2554
+ {
2555
+ "epoch": 2.867326732673267,
2556
+ "grad_norm": 0.40127768445127304,
2557
+ "learning_rate": 1.0908391628854042e-07,
2558
+ "loss": 0.7068,
2559
+ "step": 362
2560
+ },
2561
+ {
2562
+ "epoch": 2.875247524752475,
2563
+ "grad_norm": 0.4056569585309908,
2564
+ "learning_rate": 9.589569124794918e-08,
2565
+ "loss": 0.7327,
2566
+ "step": 363
2567
+ },
2568
+ {
2569
+ "epoch": 2.883168316831683,
2570
+ "grad_norm": 0.39394071807420317,
2571
+ "learning_rate": 8.355304489257254e-08,
2572
+ "loss": 0.7217,
2573
+ "step": 364
2574
+ },
2575
+ {
2576
+ "epoch": 2.891089108910891,
2577
+ "grad_norm": 0.3987850556623756,
2578
+ "learning_rate": 7.205703099551042e-08,
2579
+ "loss": 0.696,
2580
+ "step": 365
2581
+ },
2582
+ {
2583
+ "epoch": 2.899009900990099,
2584
+ "grad_norm": 0.40217224086214826,
2585
+ "learning_rate": 6.140863104726391e-08,
2586
+ "loss": 0.7303,
2587
+ "step": 366
2588
+ },
2589
+ {
2590
+ "epoch": 2.906930693069307,
2591
+ "grad_norm": 0.40009663993330546,
2592
+ "learning_rate": 5.1608754171944555e-08,
2593
+ "loss": 0.7105,
2594
+ "step": 367
2595
+ },
2596
+ {
2597
+ "epoch": 2.9148514851485148,
2598
+ "grad_norm": 0.3967938165718884,
2599
+ "learning_rate": 4.2658237049655325e-08,
2600
+ "loss": 0.7334,
2601
+ "step": 368
2602
+ },
2603
+ {
2604
+ "epoch": 2.9227722772277227,
2605
+ "grad_norm": 0.4086603962701755,
2606
+ "learning_rate": 3.455784384505445e-08,
2607
+ "loss": 0.6938,
2608
+ "step": 369
2609
+ },
2610
+ {
2611
+ "epoch": 2.9306930693069306,
2612
+ "grad_norm": 0.3899469279832273,
2613
+ "learning_rate": 2.7308266142119788e-08,
2614
+ "loss": 0.7172,
2615
+ "step": 370
2616
+ },
2617
+ {
2618
+ "epoch": 2.9386138613861386,
2619
+ "grad_norm": 0.4126769814687196,
2620
+ "learning_rate": 2.0910122885097194e-08,
2621
+ "loss": 0.7112,
2622
+ "step": 371
2623
+ },
2624
+ {
2625
+ "epoch": 2.9465346534653465,
2626
+ "grad_norm": 1.0101608008566858,
2627
+ "learning_rate": 1.5363960325660565e-08,
2628
+ "loss": 0.7177,
2629
+ "step": 372
2630
+ },
2631
+ {
2632
+ "epoch": 2.9544554455445544,
2633
+ "grad_norm": 0.422375267138987,
2634
+ "learning_rate": 1.0670251976275803e-08,
2635
+ "loss": 0.7275,
2636
+ "step": 373
2637
+ },
2638
+ {
2639
+ "epoch": 2.9623762376237623,
2640
+ "grad_norm": 0.3978598838942699,
2641
+ "learning_rate": 6.82939856977094e-09,
2642
+ "loss": 0.7221,
2643
+ "step": 374
2644
+ },
2645
+ {
2646
+ "epoch": 2.9702970297029703,
2647
+ "grad_norm": 0.4100316902452377,
2648
+ "learning_rate": 3.8417280251257235e-09,
2649
+ "loss": 0.7309,
2650
+ "step": 375
2651
+ },
2652
+ {
2653
+ "epoch": 2.978217821782178,
2654
+ "grad_norm": 0.39841317020419215,
2655
+ "learning_rate": 1.7074954194729044e-09,
2656
+ "loss": 0.7361,
2657
+ "step": 376
2658
+ },
2659
+ {
2660
+ "epoch": 2.986138613861386,
2661
+ "grad_norm": 0.39205883398967273,
2662
+ "learning_rate": 4.2688296632120705e-10,
2663
+ "loss": 0.7139,
2664
+ "step": 377
2665
+ },
2666
+ {
2667
+ "epoch": 2.994059405940594,
2668
+ "grad_norm": 0.3914037221232023,
2669
+ "learning_rate": 0.0,
2670
+ "loss": 0.714,
2671
+ "step": 378
2672
+ },
2673
+ {
2674
+ "epoch": 2.994059405940594,
2675
+ "eval_loss": 1.0379831790924072,
2676
+ "eval_runtime": 89.0288,
2677
+ "eval_samples_per_second": 2.988,
2678
+ "eval_steps_per_second": 0.191,
2679
+ "step": 378
2680
+ },
2681
+ {
2682
+ "epoch": 2.994059405940594,
2683
+ "step": 378,
2684
+ "total_flos": 158238674780160.0,
2685
+ "train_loss": 0.8970171990533354,
2686
+ "train_runtime": 67109.8008,
2687
+ "train_samples_per_second": 0.722,
2688
+ "train_steps_per_second": 0.006
2689
+ }
2690
+ ],
2691
+ "logging_steps": 1,
2692
+ "max_steps": 378,
2693
+ "num_input_tokens_seen": 0,
2694
+ "num_train_epochs": 3,
2695
+ "save_steps": 500,
2696
+ "stateful_callbacks": {
2697
+ "TrainerControl": {
2698
+ "args": {
2699
+ "should_epoch_stop": false,
2700
+ "should_evaluate": false,
2701
+ "should_log": false,
2702
+ "should_save": true,
2703
+ "should_training_stop": true
2704
+ },
2705
+ "attributes": {}
2706
+ }
2707
+ },
2708
+ "total_flos": 158238674780160.0,
2709
+ "train_batch_size": 2,
2710
+ "trial_name": null,
2711
+ "trial_params": null
2712
+ }