Upload surya-layout-fien-tuneCrossEntropyLoss.ipynb
Browse files
surya-layout-fien-tuneCrossEntropyLoss.ipynb
ADDED
|
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# Loading Packages"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "code",
|
| 12 |
+
"execution_count": 1,
|
| 13 |
+
"metadata": {},
|
| 14 |
+
"outputs": [],
|
| 15 |
+
"source": [
|
| 16 |
+
"import os\n",
|
| 17 |
+
"os.environ['HF_HOME'] = '/data2/ketan/orc/HF_Cache'\n",
|
| 18 |
+
"import torch\n",
|
| 19 |
+
"import torch.nn as nn\n",
|
| 20 |
+
"import torch.optim as optim\n",
|
| 21 |
+
"from torch.utils.data import DataLoader\n",
|
| 22 |
+
"from surya.input.processing import prepare_image_detection\n",
|
| 23 |
+
"from surya.model.detection.segformer import load_processor , load_model\n",
|
| 24 |
+
"from datasets import load_dataset\n",
|
| 25 |
+
"from tqdm import tqdm\n",
|
| 26 |
+
"from torch.utils.tensorboard import SummaryWriter\n",
|
| 27 |
+
"import torch.nn.functional as F\n",
|
| 28 |
+
"import numpy as np \n",
|
| 29 |
+
"from surya.layout import parallel_get_regions\n",
|
| 30 |
+
"import torch.nn.functional as F"
|
| 31 |
+
]
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"cell_type": "markdown",
|
| 35 |
+
"metadata": {},
|
| 36 |
+
"source": [
|
| 37 |
+
"# Initializing The Dataset And Model"
|
| 38 |
+
]
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"cell_type": "code",
|
| 42 |
+
"execution_count": 2,
|
| 43 |
+
"metadata": {},
|
| 44 |
+
"outputs": [],
|
| 45 |
+
"source": [
|
| 46 |
+
"device = torch.device(\"cuda:3\" if torch.cuda.is_available() else \"cpu\")\n",
|
| 47 |
+
"dataset = load_dataset(\"vikp/publaynet_bench\", split=\"train[:100]\") # You can choose you own dataset"
|
| 48 |
+
]
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"cell_type": "code",
|
| 52 |
+
"execution_count": 3,
|
| 53 |
+
"metadata": {},
|
| 54 |
+
"outputs": [
|
| 55 |
+
{
|
| 56 |
+
"name": "stdout",
|
| 57 |
+
"output_type": "stream",
|
| 58 |
+
"text": [
|
| 59 |
+
"Loaded detection model vikp/surya_layout2 on device cuda with dtype torch.float16\n"
|
| 60 |
+
]
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"data": {
|
| 64 |
+
"text/plain": [
|
| 65 |
+
"'.'"
|
| 66 |
+
]
|
| 67 |
+
},
|
| 68 |
+
"execution_count": 3,
|
| 69 |
+
"metadata": {},
|
| 70 |
+
"output_type": "execute_result"
|
| 71 |
+
}
|
| 72 |
+
],
|
| 73 |
+
"source": [
|
| 74 |
+
"model = load_model(\"vikp/surya_layout2\").to(device)\n",
|
| 75 |
+
"model.to(torch.float32)\n",
|
| 76 |
+
"\".\""
|
| 77 |
+
]
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"cell_type": "markdown",
|
| 81 |
+
"metadata": {},
|
| 82 |
+
"source": [
|
| 83 |
+
"# Helper Functions, Loss Function And Optimizer"
|
| 84 |
+
]
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"cell_type": "code",
|
| 88 |
+
"execution_count": 4,
|
| 89 |
+
"metadata": {},
|
| 90 |
+
"outputs": [],
|
| 91 |
+
"source": [
|
| 92 |
+
"optimizer = optim.Adam(model.parameters(), lr=1e-4)\n",
|
| 93 |
+
"log_dir = \"logs\"\n",
|
| 94 |
+
"checkpoint_dir = \"checkpoints\"\n",
|
| 95 |
+
"os.makedirs(log_dir, exist_ok=True)\n",
|
| 96 |
+
"os.makedirs(checkpoint_dir, exist_ok=True)\n",
|
| 97 |
+
"writer = SummaryWriter(log_dir=log_dir)"
|
| 98 |
+
]
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"cell_type": "code",
|
| 102 |
+
"execution_count": 5,
|
| 103 |
+
"metadata": {},
|
| 104 |
+
"outputs": [],
|
| 105 |
+
"source": [
|
| 106 |
+
"def logits_to_mask(logits, labels, bboxes, original_size=(1200, 1200)):\n",
|
| 107 |
+
" batch_size, num_classes, height, width = logits.shape\n",
|
| 108 |
+
" mask = torch.zeros((batch_size, num_classes, height, width), dtype=torch.float32).to(logits.device)\n",
|
| 109 |
+
"\n",
|
| 110 |
+
" for bbox, class_id in zip(bboxes, labels):\n",
|
| 111 |
+
" x_min, y_min, x_max, y_max = bbox\n",
|
| 112 |
+
"\n",
|
| 113 |
+
" x_min = int(x_min * width / original_size[0])\n",
|
| 114 |
+
" y_min = int(y_min * height / original_size[1])\n",
|
| 115 |
+
" x_max = int(x_max * width / original_size[0])\n",
|
| 116 |
+
" y_max = int(y_max * height / original_size[1])\n",
|
| 117 |
+
"\n",
|
| 118 |
+
" x_min = max(0, min(x_min, width - 1))\n",
|
| 119 |
+
" y_min = max(0, min(y_min, height - 1))\n",
|
| 120 |
+
" x_max = max(0, min(x_max, width - 1))\n",
|
| 121 |
+
" y_max = max(0, min(y_max, height - 1))\n",
|
| 122 |
+
"\n",
|
| 123 |
+
" if x_min < x_max and y_min < y_max:\n",
|
| 124 |
+
" mask[:, class_id, y_min:y_max, x_min:x_max] = torch.maximum(\n",
|
| 125 |
+
" mask[:, class_id, y_min:y_max, x_min:x_max], torch.tensor(1.0).to(logits.device)\n",
|
| 126 |
+
" )\n",
|
| 127 |
+
" else:\n",
|
| 128 |
+
" print(f\"Invalid bounding box after adjustment: {bbox}, adjusted to: {(x_min, y_min, x_max, y_max)}\")\n",
|
| 129 |
+
"\n",
|
| 130 |
+
" return mask\n",
|
| 131 |
+
"\n",
|
| 132 |
+
"\n",
|
| 133 |
+
"def loss_function(logits, mask):\n",
|
| 134 |
+
" loss_fn = torch.nn.CrossEntropyLoss() \n",
|
| 135 |
+
" loss = loss_fn(logits, mask)\n",
|
| 136 |
+
" return loss"
|
| 137 |
+
]
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"cell_type": "markdown",
|
| 141 |
+
"metadata": {},
|
| 142 |
+
"source": [
|
| 143 |
+
"# Fine-Tuning Process"
|
| 144 |
+
]
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"cell_type": "code",
|
| 148 |
+
"execution_count": 6,
|
| 149 |
+
"metadata": {},
|
| 150 |
+
"outputs": [
|
| 151 |
+
{
|
| 152 |
+
"name": "stderr",
|
| 153 |
+
"output_type": "stream",
|
| 154 |
+
"text": [
|
| 155 |
+
"Epoch 1/5: 100%|ββββββββββ| 100/100 [01:46<00:00, 1.07s/it]\n"
|
| 156 |
+
]
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"name": "stdout",
|
| 160 |
+
"output_type": "stream",
|
| 161 |
+
"text": [
|
| 162 |
+
"Average Loss for Epoch 1: 0.3322\n"
|
| 163 |
+
]
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"name": "stderr",
|
| 167 |
+
"output_type": "stream",
|
| 168 |
+
"text": [
|
| 169 |
+
"Epoch 2/5: 100%|ββββββββββ| 100/100 [01:51<00:00, 1.11s/it]\n"
|
| 170 |
+
]
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"name": "stdout",
|
| 174 |
+
"output_type": "stream",
|
| 175 |
+
"text": [
|
| 176 |
+
"Average Loss for Epoch 2: 0.3311\n"
|
| 177 |
+
]
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"name": "stderr",
|
| 181 |
+
"output_type": "stream",
|
| 182 |
+
"text": [
|
| 183 |
+
"Epoch 3/5: 100%|ββββββββββ| 100/100 [01:51<00:00, 1.12s/it]\n"
|
| 184 |
+
]
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"name": "stdout",
|
| 188 |
+
"output_type": "stream",
|
| 189 |
+
"text": [
|
| 190 |
+
"Average Loss for Epoch 3: 0.3197\n"
|
| 191 |
+
]
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"name": "stderr",
|
| 195 |
+
"output_type": "stream",
|
| 196 |
+
"text": [
|
| 197 |
+
"Epoch 4/5: 100%|ββββββββββ| 100/100 [01:42<00:00, 1.03s/it]\n"
|
| 198 |
+
]
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"name": "stdout",
|
| 202 |
+
"output_type": "stream",
|
| 203 |
+
"text": [
|
| 204 |
+
"Average Loss for Epoch 4: 0.3106\n"
|
| 205 |
+
]
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"name": "stderr",
|
| 209 |
+
"output_type": "stream",
|
| 210 |
+
"text": [
|
| 211 |
+
"Epoch 5/5: 100%|ββββββββββ| 100/100 [01:46<00:00, 1.06s/it]\n"
|
| 212 |
+
]
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"name": "stdout",
|
| 216 |
+
"output_type": "stream",
|
| 217 |
+
"text": [
|
| 218 |
+
"Average Loss for Epoch 5: 0.3160\n"
|
| 219 |
+
]
|
| 220 |
+
}
|
| 221 |
+
],
|
| 222 |
+
"source": [
|
| 223 |
+
"num_epochs = 5\n",
|
| 224 |
+
"\n",
|
| 225 |
+
"for param in model.parameters():\n",
|
| 226 |
+
" param.requires_grad = True\n",
|
| 227 |
+
"\n",
|
| 228 |
+
"\n",
|
| 229 |
+
"model.train()\n",
|
| 230 |
+
"with torch.autograd.set_detect_anomaly(True):\n",
|
| 231 |
+
"\n",
|
| 232 |
+
" for epoch in range(num_epochs):\n",
|
| 233 |
+
" running_loss = 0.0\n",
|
| 234 |
+
" avg_loss = 0.0\n",
|
| 235 |
+
"\n",
|
| 236 |
+
" for idx, item in enumerate(tqdm(dataset, desc=f\"Epoch {epoch + 1}/{num_epochs}\")):\n",
|
| 237 |
+
" images = [prepare_image_detection(img=item['image'], processor=load_processor())]\n",
|
| 238 |
+
" images = torch.stack(images, dim=0).to(model.dtype).to(model.device)\n",
|
| 239 |
+
" \n",
|
| 240 |
+
" optimizer.zero_grad()\n",
|
| 241 |
+
" outputs = model(pixel_values=images)\n",
|
| 242 |
+
"\n",
|
| 243 |
+
"\n",
|
| 244 |
+
" logits = outputs.logits\n",
|
| 245 |
+
"\n",
|
| 246 |
+
" bboxes = item['bboxes']\n",
|
| 247 |
+
" labels = item['category_ids']\n",
|
| 248 |
+
" mask = logits_to_mask(logits, labels, bboxes)\n",
|
| 249 |
+
"\n",
|
| 250 |
+
" logits = logits.to(torch.float32)\n",
|
| 251 |
+
" mask = mask.to(torch.float32)\n",
|
| 252 |
+
" loss = loss_function(logits, mask)\n",
|
| 253 |
+
"\n",
|
| 254 |
+
" loss.backward()\n",
|
| 255 |
+
"\n",
|
| 256 |
+
" optimizer.step()\n",
|
| 257 |
+
"\n",
|
| 258 |
+
" avg_loss = 0.9 * avg_loss + 0.1 * loss.item() if idx > 0 else loss.item()\n",
|
| 259 |
+
"\n",
|
| 260 |
+
" writer.add_scalar('Training Loss', avg_loss, epoch + 1)\n",
|
| 261 |
+
" print(f\"Average Loss for Epoch {epoch + 1}: {avg_loss:.4f}\")\n",
|
| 262 |
+
"\n",
|
| 263 |
+
" torch.save(model.state_dict(), os.path.join(checkpoint_dir, f\"model_epoch_{epoch + 1}.pth\"))\n"
|
| 264 |
+
]
|
| 265 |
+
},
|
| 266 |
+
{
|
| 267 |
+
"cell_type": "markdown",
|
| 268 |
+
"metadata": {},
|
| 269 |
+
"source": [
|
| 270 |
+
"# Loading The Checkpoint "
|
| 271 |
+
]
|
| 272 |
+
},
|
| 273 |
+
{
|
| 274 |
+
"cell_type": "code",
|
| 275 |
+
"execution_count": 7,
|
| 276 |
+
"metadata": {},
|
| 277 |
+
"outputs": [
|
| 278 |
+
{
|
| 279 |
+
"data": {
|
| 280 |
+
"text/plain": [
|
| 281 |
+
"<All keys matched successfully>"
|
| 282 |
+
]
|
| 283 |
+
},
|
| 284 |
+
"execution_count": 7,
|
| 285 |
+
"metadata": {},
|
| 286 |
+
"output_type": "execute_result"
|
| 287 |
+
}
|
| 288 |
+
],
|
| 289 |
+
"source": [
|
| 290 |
+
"checkpoint_path = '/data2/ketan/orc/surya-layout-fine-tune/checkpoints/model_epoch_5.pth' \n",
|
| 291 |
+
"state_dict = torch.load(checkpoint_path,weights_only=True)\n",
|
| 292 |
+
"\n",
|
| 293 |
+
"model.load_state_dict(state_dict)"
|
| 294 |
+
]
|
| 295 |
+
},
|
| 296 |
+
{
|
| 297 |
+
"cell_type": "code",
|
| 298 |
+
"execution_count": 8,
|
| 299 |
+
"metadata": {},
|
| 300 |
+
"outputs": [],
|
| 301 |
+
"source": [
|
| 302 |
+
"model.to('cpu')\n",
|
| 303 |
+
"model.save_pretrained(\"fine-tuned-surya-model-layout\")"
|
| 304 |
+
]
|
| 305 |
+
}
|
| 306 |
+
],
|
| 307 |
+
"metadata": {
|
| 308 |
+
"kernelspec": {
|
| 309 |
+
"display_name": "Python 3",
|
| 310 |
+
"language": "python",
|
| 311 |
+
"name": "python3"
|
| 312 |
+
},
|
| 313 |
+
"language_info": {
|
| 314 |
+
"codemirror_mode": {
|
| 315 |
+
"name": "ipython",
|
| 316 |
+
"version": 3
|
| 317 |
+
},
|
| 318 |
+
"file_extension": ".py",
|
| 319 |
+
"mimetype": "text/x-python",
|
| 320 |
+
"name": "python",
|
| 321 |
+
"nbconvert_exporter": "python",
|
| 322 |
+
"pygments_lexer": "ipython3",
|
| 323 |
+
"version": "3.10.14"
|
| 324 |
+
}
|
| 325 |
+
},
|
| 326 |
+
"nbformat": 4,
|
| 327 |
+
"nbformat_minor": 2
|
| 328 |
+
}
|