Divyasreepat commited on
Commit
93c0217
1 Parent(s): 07318b4

Update README.md with new model card content

Browse files
Files changed (1) hide show
  1. README.md +56 -9
README.md CHANGED
@@ -1,6 +1,3 @@
1
- ---
2
- library_name: keras-hub
3
- ---
4
  ### Model Overview
5
  A RoBERTa encoder network.
6
 
@@ -39,7 +36,7 @@ __Arguments__
39
  ### Example Usage
40
  ```python
41
  import keras
42
- import keras_hub
43
  import numpy as np
44
  ```
45
 
@@ -49,8 +46,8 @@ features = ["The quick brown fox jumped.", "I forgot my homework."]
49
  labels = [0, 3]
50
 
51
  # Pretrained classifier.
52
- classifier = keras_hub.models.RobertaClassifier.from_preset(
53
- "roberta_base_en",
54
  num_classes=4,
55
  )
56
  classifier.fit(x=features, y=labels, batch_size=2)
@@ -77,10 +74,60 @@ features = {
77
  labels = [0, 3]
78
 
79
  # Pretrained classifier without preprocessing.
80
- classifier = keras_hub.models.RobertaClassifier.from_preset(
81
- "roberta_base_en",
82
  num_classes=4,
83
  preprocessor=None,
84
  )
85
  classifier.fit(x=features, y=labels, batch_size=2)
86
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ### Model Overview
2
  A RoBERTa encoder network.
3
 
 
36
  ### Example Usage
37
  ```python
38
  import keras
39
+ import keras_nlp
40
  import numpy as np
41
  ```
42
 
 
46
  labels = [0, 3]
47
 
48
  # Pretrained classifier.
49
+ classifier = keras_nlp.models.RobertaClassifier.from_preset(
50
+ "${VARIATION_SLUG}",
51
  num_classes=4,
52
  )
53
  classifier.fit(x=features, y=labels, batch_size=2)
 
74
  labels = [0, 3]
75
 
76
  # Pretrained classifier without preprocessing.
77
+ classifier = keras_nlp.models.RobertaClassifier.from_preset(
78
+ "${VARIATION_SLUG}",
79
  num_classes=4,
80
  preprocessor=None,
81
  )
82
  classifier.fit(x=features, y=labels, batch_size=2)
83
+ ```
84
+
85
+ ## Example Usage with HuggingFace uri
86
+
87
+ ```python
88
+ import keras
89
+ import keras_nlp
90
+ import numpy as np
91
+ ```
92
+
93
+ Raw string data.
94
+ ```python
95
+ features = ["The quick brown fox jumped.", "I forgot my homework."]
96
+ labels = [0, 3]
97
+
98
+ # Pretrained classifier.
99
+ classifier = keras_nlp.models.RobertaClassifier.from_preset(
100
+ "${VARIATION_SLUG}",
101
+ num_classes=4,
102
+ )
103
+ classifier.fit(x=features, y=labels, batch_size=2)
104
+ classifier.predict(x=features, batch_size=2)
105
+
106
+ # Re-compile (e.g., with a new learning rate).
107
+ classifier.compile(
108
+ loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
109
+ optimizer=keras.optimizers.Adam(5e-5),
110
+ jit_compile=True,
111
+ )
112
+ # Access backbone programmatically (e.g., to change `trainable`).
113
+ classifier.backbone.trainable = False
114
+ # Fit again.
115
+ classifier.fit(x=features, y=labels, batch_size=2)
116
+ ```
117
+
118
+ Preprocessed integer data.
119
+ ```python
120
+ features = {
121
+ "token_ids": np.ones(shape=(2, 12), dtype="int32"),
122
+ "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2),
123
+ }
124
+ labels = [0, 3]
125
+
126
+ # Pretrained classifier without preprocessing.
127
+ classifier = keras_nlp.models.RobertaClassifier.from_preset(
128
+ "${VARIATION_SLUG}",
129
+ num_classes=4,
130
+ preprocessor=None,
131
+ )
132
+ classifier.fit(x=features, y=labels, batch_size=2)
133
+ ```