Text Generation
KerasHub
Keras
English
File size: 5,122 Bytes
cd7983a
 
5e7cd81
 
 
 
 
 
cd7983a
f3bd3ef
0faaf9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3bd3ef
0faaf9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e7cd81
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
---
library_name: keras-hub
license: apache-2.0
language:
- en
tags:
- text-generation
- keras
---
## Model Overview
An OPT decoder network.

This class implements a Transformer-based decoder model as described in
["OPT: Open Pre-trained Transformer Language Models"](https://arxiv.org/abs/2205.01068).
The default constructor gives a fully customizable, randomly initialized OPT
model with any number of layers, heads, and embedding dimensions. To load
preset architectures and weights, use the `from_preset()` constructor.

Disclaimer: Pre-trained models are provided on an "as is" basis, without
warranties or conditions of any kind. The underlying model is provided by a
third party and subject to a separate license, available
[here](https://github.com/facebookresearch/fairseq/).


__Arguments__


- __vocabulary_size__: int. The size of the token vocabulary.
- __num_layers__: int. The number of transformer decoder layers.
- __num_heads__: int. The number of attention heads for each transformer.
    The hidden size must be divisible by the number of attention heads.
- __hidden_dim__: int. The hidden size of the transformer decoder layers.
- __intermediate_dim__: int. The output dimension of the first Dense layer in
    a two-layer feedforward network for each transformer decoder layer.
- __dropout__: float. Dropout probability for the Transformer decoder.
- __max_sequence_length__: int. The maximum sequence length that this decoder
    can consume. If `None`, `max_sequence_length` uses the value from
    sequence length. This determines the variable shape for positional
    embeddings.

## Example Usage
```python
import keras
import keras_hub
import numpy as np
```

Use `generate()` to do text generation.
```python
opt_lm = keras_hub.models.OPTCausalLM.from_preset("opt_2.7b_en")
opt_lm.generate("I want to say", max_length=30)

# Generate with batched prompts.
opt_lm.generate(["This is a", "Where are you"], max_length=30)
```

Compile the `generate()` function with a custom sampler.
```python
opt_lm = keras_hub.models.OPTCausalLM.from_preset("opt_2.7b_en")
opt_lm.compile(sampler="greedy")
opt_lm.generate("I want to say", max_length=30)

opt_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
opt_lm.generate("I want to say", max_length=30)
```

Use `generate()` without preprocessing.
```python
# Prompt the model with `5338, 318` (the token ids for `"Who is"`).
# Use `"padding_mask"` to indicate values that should not be overridden.
prompt = {
    "token_ids": np.array([[5338, 318, 0, 0, 0]] * 2),
    "padding_mask": np.array([[1, 1, 0, 0, 0]] * 2),
}

opt_lm = keras_hub.models.OPTCausalLM.from_preset(
    "opt_2.7b_en",
    preprocessor=None,
)
opt_lm.generate(prompt)
```

Call `fit()` on a single batch.
```python
features = ["The quick brown fox jumped.", "I forgot my homework."]
opt_lm = keras_hub.models.OPTCausalLM.from_preset("opt_2.7b_en")
opt_lm.fit(x=features, batch_size=2)
```

Call `fit()` without preprocessing.
```python
x = {
    "token_ids": np.array([[1, 2, 3, 4, 5]] * 2),
    "padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
}
y = np.array([[2, 3, 4, 5, 0]] * 2)
sw = np.array([[1, 1, 1, 1, 1]] * 2)

opt_lm = keras_hub.models.OPTCausalLM.from_preset(
    "opt_2.7b_en",
    preprocessor=None,
)
opt_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
```

## Example Usage with Hugging Face URI

```python
import keras
import keras_hub
import numpy as np
```

Use `generate()` to do text generation.
```python
opt_lm = keras_hub.models.OPTCausalLM.from_preset("hf://keras/opt_2.7b_en")
opt_lm.generate("I want to say", max_length=30)

# Generate with batched prompts.
opt_lm.generate(["This is a", "Where are you"], max_length=30)
```

Compile the `generate()` function with a custom sampler.
```python
opt_lm = keras_hub.models.OPTCausalLM.from_preset("hf://keras/opt_2.7b_en")
opt_lm.compile(sampler="greedy")
opt_lm.generate("I want to say", max_length=30)

opt_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
opt_lm.generate("I want to say", max_length=30)
```

Use `generate()` without preprocessing.
```python
# Prompt the model with `5338, 318` (the token ids for `"Who is"`).
# Use `"padding_mask"` to indicate values that should not be overridden.
prompt = {
    "token_ids": np.array([[5338, 318, 0, 0, 0]] * 2),
    "padding_mask": np.array([[1, 1, 0, 0, 0]] * 2),
}

opt_lm = keras_hub.models.OPTCausalLM.from_preset(
    "hf://keras/opt_2.7b_en",
    preprocessor=None,
)
opt_lm.generate(prompt)
```

Call `fit()` on a single batch.
```python
features = ["The quick brown fox jumped.", "I forgot my homework."]
opt_lm = keras_hub.models.OPTCausalLM.from_preset("hf://keras/opt_2.7b_en")
opt_lm.fit(x=features, batch_size=2)
```

Call `fit()` without preprocessing.
```python
x = {
    "token_ids": np.array([[1, 2, 3, 4, 5]] * 2),
    "padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
}
y = np.array([[2, 3, 4, 5, 0]] * 2)
sw = np.array([[1, 1, 1, 1, 1]] * 2)

opt_lm = keras_hub.models.OPTCausalLM.from_preset(
    "hf://keras/opt_2.7b_en",
    preprocessor=None,
)
opt_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
```