File size: 9,374 Bytes
17931a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7c207f
17931a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# -*- coding: utf-8 -*-
"""TFDecisionTrees_Final.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1QCdVlNQ8LszC_v3ek10DUeO9V0IvVzpm

# Classification with TF Decision Trees
Source code from https://keras.io/examples/structured_data/classification_with_tfdf/
"""

!pip install huggingface_hub

!pip install numpy==1.20

!pip install folium==0.2.1

!pip install imgaug==0.2.6

!pip install tensorflow==2.8.0

!pip install -U tensorflow_decision_forests

!pip install ipykernel==4.10

!apt-get install -y git-lfs

!pip install wurlitzer

from huggingface_hub import notebook_login
from huggingface_hub.keras_mixin import push_to_hub_keras

notebook_login()

import math
import urllib
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import tensorflow_decision_forests as tfdf
import os
import tempfile

tmpdir = tempfile.mkdtemp()

try:
  from wurlitzer import sys_pipes
except:
  from colabtools.googlelog import CaptureLog as sys_pipes

input_path = "https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/census-income"
input_column_header = "income_level"

#Load data

BASE_PATH = input_path
CSV_HEADER = [ l.decode("utf-8").split(":")[0].replace(" ", "_")
  for l in urllib.request.urlopen(f"{BASE_PATH}.names")
  if not l.startswith(b"|")][2:]

CSV_HEADER.append(input_column_header)

train_data = pd.read_csv(f"{BASE_PATH}.data.gz", header=None, names=CSV_HEADER)
test_data = pd.read_csv(f"{BASE_PATH}.test.gz", header=None, names=CSV_HEADER)

train_data["migration_code-change_in_msa"] = train_data["migration_code-change_in_msa"].apply(lambda x: "Unansw" if x == " ?" else x)

test_data["migration_code-change_in_msa"] = test_data["migration_code-change_in_msa"].apply(lambda x: "Unansw" if x == " ?" else x)

print(train_data["migration_code-change_in_msa"].unique())

for i, value in enumerate(CSV_HEADER):
  if value == "fill_inc_questionnaire_for_veteran's_admin":
    CSV_HEADER[i] = "fill_inc_veterans_admin"
  elif value == "migration_code-change_in_msa":
    CSV_HEADER[i] = "migration_code_chx_in_msa"
  elif value == "migration_code-change_in_reg":
    CSV_HEADER[i] = "migration_code_chx_in_reg"
  elif value == "migration_code-move_within_reg":
    CSV_HEADER[i] = "migration_code_move_within_reg"

#inspect the classes of the label, the input_column_header in this case
classes = train_data["income_level"].unique().tolist()
print(f"Label classes: {classes}")

#rename columns containing invalid characters
train_data = train_data.rename(columns={"fill_inc_questionnaire_for_veteran's_admin": "fill_inc_veterans_admin", "migration_code-change_in_msa": "migration_code_chx_in_msa", "migration_code-change_in_reg" : "migration_code_chx_in_reg", "migration_code-move_within_reg" : "migration_code_move_within_reg"})
test_data = test_data.rename(columns={"fill_inc_questionnaire_for_veteran's_admin": "fill_inc_veterans_admin", "migration_code-change_in_msa": "migration_code_chx_in_msa", "migration_code-change_in_reg" : "migration_code_chx_in_reg", "migration_code-move_within_reg" : "migration_code_move_within_reg"})

#convert from string to integers
# This stage is necessary if your classification label is represented as a
# string. Note: Keras expected classification labels to be integers.
target_labels = [" - 50000.", " 50000+."]
train_data[input_column_header] = train_data[input_column_header].map(target_labels.index)
test_data[input_column_header] = test_data[input_column_header].map(target_labels.index)

#Observe shape of training and test data
print(f"Train data shape: {train_data.shape}")
print(f"Test data shape: {test_data.shape}")
print(train_data.head().T)

#define metadata

# Target column name.
TARGET_COLUMN_NAME = "income_level"
# Weight column name.
WEIGHT_COLUMN_NAME = "instance_weight"
# Numeric feature names.
NUMERIC_FEATURE_NAMES = [
    "age",
    "wage_per_hour",
    "capital_gains",
    "capital_losses",
    "dividends_from_stocks",
    "num_persons_worked_for_employer",
    "weeks_worked_in_year",
]

# Categorical features and their vocabulary lists.
CATEGORICAL_FEATURES_WITH_VOCABULARY = {
    feature_name: sorted(
        [str(value) for value in list(train_data[feature_name].unique())]
    )
    for feature_name in CSV_HEADER
    if feature_name
    not in list(NUMERIC_FEATURE_NAMES + [WEIGHT_COLUMN_NAME, TARGET_COLUMN_NAME])
}
# All features names.
FEATURE_NAMES = NUMERIC_FEATURE_NAMES + list(
    CATEGORICAL_FEATURES_WITH_VOCABULARY.keys()
)

"""Configure hyperparameters for the tree model."""

GROWING_STRATEGY = "BEST_FIRST_GLOBAL"
NUM_TREES = 250
MIN_EXAMPLES = 6
MAX_DEPTH = 5
SUBSAMPLE = 0.65
SAMPLING_METHOD = "RANDOM"
VALIDATION_RATIO = 0.1

#Implement training & evaluation procedure
def prepare_sample(features, target, weight):
    for feature_name in features:
        if feature_name in CATEGORICAL_FEATURES_WITH_VOCABULARY:
            if features[feature_name].dtype != tf.dtypes.string:
                # Convert categorical feature values to string.
                features[feature_name] = tf.strings.as_string(features[feature_name])
    return features, target, weight


def run_experiment(model, train_data, test_data, num_epochs=1, batch_size=None):

    train_dataset = tfdf.keras.pd_dataframe_to_tf_dataset(
        train_data, label="income_level", weight="instance_weight"
    ).map(prepare_sample, num_parallel_calls=tf.data.AUTOTUNE)
    test_dataset = tfdf.keras.pd_dataframe_to_tf_dataset(
        test_data, label="income_level", weight="instance_weight"
    ).map(prepare_sample, num_parallel_calls=tf.data.AUTOTUNE)

    model.fit(train_dataset, epochs=num_epochs, batch_size=batch_size)
    _, accuracy = model.evaluate(test_dataset, verbose=0)
    push_to_hub = True
    print(f"Test accuracy: {round(accuracy * 100, 2)}%")

#Create model inputs

def create_model_inputs():
    inputs = {}
    for feature_name in FEATURE_NAMES:
        if feature_name in NUMERIC_FEATURE_NAMES:
            inputs[feature_name] = layers.Input(
                name=feature_name, shape=(), dtype=tf.float32
            )
        else:
            inputs[feature_name] = layers.Input(
                name=feature_name, shape=(), dtype=tf.string
            )
    return inputs

"""# Experiment 1: Decision Forests with raw features"""

#Decision Forest with raw features
def specify_feature_usages(inputs):
    feature_usages = []

    for feature_name in inputs:
        if inputs[feature_name].dtype == tf.dtypes.float32:
            feature_usage = tfdf.keras.FeatureUsage(
                name=feature_name, semantic=tfdf.keras.FeatureSemantic.NUMERICAL
            )
        else:
            feature_usage = tfdf.keras.FeatureUsage(
                name=feature_name, semantic=tfdf.keras.FeatureSemantic.CATEGORICAL
            )

        feature_usages.append(feature_usage)
    return feature_usages

#Create GB trees model
def create_gbt_model():
    gbt_model = tfdf.keras.GradientBoostedTreesModel(
        features = specify_feature_usages(create_model_inputs()),
        exclude_non_specified_features = True,
        growing_strategy = GROWING_STRATEGY,
        num_trees = NUM_TREES,
        max_depth = MAX_DEPTH,
        min_examples = MIN_EXAMPLES,
        subsample = SUBSAMPLE,
        validation_ratio = VALIDATION_RATIO,
        task = tfdf.keras.Task.CLASSIFICATION,
        loss = "DEFAULT",
    )

    gbt_model.compile(metrics=[keras.metrics.BinaryAccuracy(name="accuracy")])
    return gbt_model

#Train and evaluate model
gbt_model = create_gbt_model()
run_experiment(gbt_model, train_data, test_data)

#Inspect the model: Model type, mask, input features, feature importance
print(gbt_model.summary())

inspector = gbt_model.make_inspector()
[field for field in dir(inspector) if not field.startswith("_")]

#plot the model
tfdf.model_plotter.plot_model_in_colab(gbt_model, tree_idx=0, max_depth=3)

#display variable importance
inspector.variable_importances()

print("Model type:", inspector.model_type())
print("Number of trees:", inspector.num_trees())
print("Objective:", inspector.objective())
print("Input features:", inspector.features())

inspector.features()

#save_path = os.path.join(tmpdir, "raw/1/")
gbt_model.save("/Users/tdubon/TF_Model")

"""# Creating HF Space"""

from huggingface_hub import KerasModelHubMixin
from huggingface_hub.keras_mixin import push_to_hub_keras
push_to_hub_keras(gbt_model, repo_url="https://huggingface.co/keras-io/TF_Decision_Trees")

#Clone and configure
!git clone https://tdubon:[email protected]/tdubon/TF_Decision_Trees

!cd TFClassificationForest
!git config --global user.email "[email protected]"
# Tip: using the same email than for your huggingface.co account will link your commits to your profile
!git config --global user.name "tdubon"

!git add .
!git commit -m "Initial commit"
!git push

tf.keras.models.save_model(
    gbt_model, "/Users/tdubon/TFClassificationForest", overwrite=True, include_optimizer=True, save_format=None,
    signatures=None, options=None, save_traces=True)

# Commented out IPython magic to ensure Python compatibility.
gbt_model.make_inspector().export_to_tensorboard("/tmp/tb_logs/model_1")

# %load_ext tensorboard
# %tensorboard --logdir "/tmp/tb_logs"