kennethgoodman
commited on
Commit
·
9ebf129
1
Parent(s):
2d0e1ae
Upload PPO CartPole-v1 trained agent
Browse files- CartPole-v1-version_0_0_2.zip +3 -0
- CartPole-v1-version_0_0_2/_stable_baselines3_version +1 -0
- CartPole-v1-version_0_0_2/data +94 -0
- CartPole-v1-version_0_0_2/policy.optimizer.pth +3 -0
- CartPole-v1-version_0_0_2/policy.pth +3 -0
- CartPole-v1-version_0_0_2/pytorch_variables.pth +3 -0
- CartPole-v1-version_0_0_2/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
CartPole-v1-version_0_0_2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30686e405a2f58336a9bb29c791ef86dfe0a5f2a9b269fa7bbd9c3f815012210
|
3 |
+
size 137627
|
CartPole-v1-version_0_0_2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
CartPole-v1-version_0_0_2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe1a1e6c160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe1a1e6c1f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe1a1e6c280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe1a1e6c310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe1a1e6c3a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe1a1e6c430>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe1a1e6c4c0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe1a1e6c550>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe1a1e6c5e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe1a1e6c670>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe1a1e6c700>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe1a1e647e0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAACamZnA//9//1B31r7//3//lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
4
|
29 |
+
],
|
30 |
+
"low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
|
31 |
+
"high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
|
32 |
+
"bounded_below": "[ True True True True]",
|
33 |
+
"bounded_above": "[ True True True True]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 2,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2506752,
|
46 |
+
"_total_timesteps": 2500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670424930627458580,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAAoiJT7sO5K8bE4evcZCWT6My9w9dt2tPrLwgDz0LrG+GY3LPROWYz41dqW7dY8vvrtfiT4Xvvm81rFGvcUnkj5N7Aw97I0fPvuJYzzAM46+As7HPDXKwD618ni7Ps0Iv6X3LD4dpkm+yo3bOgnHST4tr2E+jrVPveY/97k+gro91fcOPgap4rxM04Y8QW8PvT/aXj0k9zQ9FZGDPEBuwb1BdQo+//q6vjgrmLy8A00+msILPY7eZj5DRsQ7cQuOvphUWj7EbHu+Pr8lvfmdsz4fFx8+5cC1PpCyBby7/uq+KNshPFUJY77xd5O8dH5VPn8zDj6RpWo+3KhLOmJF3r6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLBIaUjAFDlHSUUpQu"
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAiwOpxeb/fnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIsEKEUTL4h1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLBFMj/uLKdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiylQSJ0nxHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIspfxaxHG11fZQoaAZHQH9AAAAAAABoB030AWgIR0CLKaeqaPS2dX2UKGgGR0BDgAAAAAAAaAdLJ2gIR0CLKbFLFn7IdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiynzZYgaFXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIsqL5O8Cgd1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLKjrUsnRcdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiyqLxAjY7XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIsq/lwLmZF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLKyaCL/CJdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiytJrULDynV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIsrd4LThHd1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLK+fr8iwCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiyxV89fTkXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIssYKx9oex1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLLNjYI0IkdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiy0CjUNKAnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIsuYmb9ZRt1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLLosjmjj8dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiy6UpuuRtHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIsu1/DtPYZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLLxfiPyTZdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiy8jGcWj5HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIsvgJHAh0R1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLL/MQmNR4dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAizAbjkuHvnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIswPk7wKBx1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLMGR3eN1hdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAizDTlkpZwHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIsxMn9ehPF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLMT0ulGgBdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAizG33xnWa3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIsx4h0Qsf91fZQoaAZHQH9AAAAAAABoB030AWgIR0CLV6SSNfgKdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi1fMdT5wfnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQItX1dTo+wF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLWCTUy57PdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi1he7+T/yXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQItYai7Ciyp1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLWLgMMI/rdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi1knN5dGAnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQItZTl/6O5t1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLWXAO8TSLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi1mYrjHXE3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQItaCTnq3Vl1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLWmh0Qsf8dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi1pzRx95QnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIta704BFNN1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLWxnL7oB8dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi1x58KG+K3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQItcogLZzxR1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLXKtzS1E3dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi1zt3fQ8fXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQItdJ9uxbB51fZQoaAZHQH9AAAAAAABoB030AWgIR0CLXTN4Z/CqdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi12BzV+ZxHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQItd+RPoFFF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLXiAGSpzcdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi15BScbzb3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIteZqfvnbJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLXtRpDeCTdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi18yAH3UQXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQItfO4PPLPl1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLX7GH58BudX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi1/bfgrH2nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuFObI91U51fZQoaAZHQH9AAAAAAABoB030AWgIR0CLhWGpuMuOdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4Vq0D2alXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuFrQ3PzFx1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLhedxQzk7dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4Xyk9ECvHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuGQaef7Jp1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLhrk6tDD1dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4bhMrVe8nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuHCAlOXVt1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLhy4BFNL2dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4edM9KVZHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuH+P3i7051fZQoaAZHQH9AAAAAAABoB030AWgIR0CLiAN0/4ZddX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4h6PS2H+XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuIo/xDst11fZQoaAZHQH9AAAAAAABoB030AWgIR0CLigqI7/4qdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4ozZxrBTHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuKPNeMQ3B1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLioHfMwDedX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4q/RE4NqnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuKysOoYN11fZQoaAZHQH9AAAAAAABoB030AWgIR0CLix7MPjGUdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4uXHJcPfHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuLxScbzbx1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLi+i0v4/NdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4wSeyzHCHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuMgeV9nbt1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLjNxtHhCMdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4zmfwqiGnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuNXW4EwFl1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLjYbWmP5pdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 612,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
CartPole-v1-version_0_0_2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5724be874632b804d95bee8b39982a2295aa329801015e564999fe01946955aa
|
3 |
+
size 82745
|
CartPole-v1-version_0_0_2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc85e101b1a09d0906ce38510a214c0ece307a0a99e40fda7c4c82551fa58ecd
|
3 |
+
size 40641
|
CartPole-v1-version_0_0_2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
CartPole-v1-version_0_0_2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- CartPole-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: CartPole-v1
|
16 |
+
type: CartPole-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 500.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **CartPole-v1**
|
25 |
+
This is a trained model of a **PPO** agent playing **CartPole-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe1a1e6c160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe1a1e6c1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe1a1e6c280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe1a1e6c310>", "_build": "<function ActorCriticPolicy._build at 0x7fe1a1e6c3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe1a1e6c430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe1a1e6c4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe1a1e6c550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe1a1e6c5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe1a1e6c670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe1a1e6c700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe1a1e647e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAACamZnA//9//1B31r7//3//lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 2, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2506752, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670424930627458580, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAAoiJT7sO5K8bE4evcZCWT6My9w9dt2tPrLwgDz0LrG+GY3LPROWYz41dqW7dY8vvrtfiT4Xvvm81rFGvcUnkj5N7Aw97I0fPvuJYzzAM46+As7HPDXKwD618ni7Ps0Iv6X3LD4dpkm+yo3bOgnHST4tr2E+jrVPveY/97k+gro91fcOPgap4rxM04Y8QW8PvT/aXj0k9zQ9FZGDPEBuwb1BdQo+//q6vjgrmLy8A00+msILPY7eZj5DRsQ7cQuOvphUWj7EbHu+Pr8lvfmdsz4fFx8+5cC1PpCyBby7/uq+KNshPFUJY77xd5O8dH5VPn8zDj6RpWo+3KhLOmJF3r6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAiwOpxeb/fnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIsEKEUTL4h1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLBFMj/uLKdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiylQSJ0nxHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIspfxaxHG11fZQoaAZHQH9AAAAAAABoB030AWgIR0CLKaeqaPS2dX2UKGgGR0BDgAAAAAAAaAdLJ2gIR0CLKbFLFn7IdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiynzZYgaFXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIsqL5O8Cgd1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLKjrUsnRcdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiyqLxAjY7XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIsq/lwLmZF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLKyaCL/CJdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiytJrULDynV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIsrd4LThHd1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLK+fr8iwCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiyxV89fTkXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIssYKx9oex1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLLNjYI0IkdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiy0CjUNKAnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIsuYmb9ZRt1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLLosjmjj8dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiy6UpuuRtHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIsu1/DtPYZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLLxfiPyTZdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiy8jGcWj5HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIsvgJHAh0R1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLL/MQmNR4dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAizAbjkuHvnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIswPk7wKBx1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLMGR3eN1hdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAizDTlkpZwHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIsxMn9ehPF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLMT0ulGgBdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAizG33xnWa3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIsx4h0Qsf91fZQoaAZHQH9AAAAAAABoB030AWgIR0CLV6SSNfgKdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi1fMdT5wfnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQItX1dTo+wF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLWCTUy57PdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi1he7+T/yXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQItYai7Ciyp1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLWLgMMI/rdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi1knN5dGAnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQItZTl/6O5t1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLWXAO8TSLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi1mYrjHXE3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQItaCTnq3Vl1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLWmh0Qsf8dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi1pzRx95QnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIta704BFNN1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLWxnL7oB8dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi1x58KG+K3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQItcogLZzxR1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLXKtzS1E3dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi1zt3fQ8fXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQItdJ9uxbB51fZQoaAZHQH9AAAAAAABoB030AWgIR0CLXTN4Z/CqdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi12BzV+ZxHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQItd+RPoFFF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLXiAGSpzcdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi15BScbzb3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIteZqfvnbJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLXtRpDeCTdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi18yAH3UQXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQItfO4PPLPl1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLX7GH58BudX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi1/bfgrH2nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuFObI91U51fZQoaAZHQH9AAAAAAABoB030AWgIR0CLhWGpuMuOdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4Vq0D2alXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuFrQ3PzFx1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLhedxQzk7dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4Xyk9ECvHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuGQaef7Jp1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLhrk6tDD1dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4bhMrVe8nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuHCAlOXVt1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLhy4BFNL2dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4edM9KVZHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuH+P3i7051fZQoaAZHQH9AAAAAAABoB030AWgIR0CLiAN0/4ZddX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4h6PS2H+XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuIo/xDst11fZQoaAZHQH9AAAAAAABoB030AWgIR0CLigqI7/4qdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4ozZxrBTHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuKPNeMQ3B1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLioHfMwDedX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4q/RE4NqnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuKysOoYN11fZQoaAZHQH9AAAAAAABoB030AWgIR0CLix7MPjGUdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4uXHJcPfHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuLxScbzbx1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLi+i0v4/NdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4wSeyzHCHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuMgeV9nbt1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLjNxtHhCMdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAi4zmfwqiGnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIuNXW4EwFl1fZQoaAZHQH9AAAAAAABoB030AWgIR0CLjYbWmP5pdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 612, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (57.1 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-07T15:10:25.643011"}
|