keith-taylor commited on
Commit
84b8533
1 Parent(s): eb36611

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 232.93 +/- 65.27
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 288.54 +/- 20.64
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fee7362f200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fee7362f290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fee7362f320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fee7362f3b0>", "_build": "<function ActorCriticPolicy._build at 0x7fee7362f440>", "forward": "<function ActorCriticPolicy.forward at 0x7fee7362f4d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fee7362f560>", "_predict": "<function ActorCriticPolicy._predict at 0x7fee7362f5f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fee7362f680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fee7362f710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fee7362f7a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fee7366dea0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651850598.9201546, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM045DtclxS6RsAVOPosPzODrg+7g+kvtwAAgD8AAIA/MzjwPI9OWLq3Nb05GmliNEbSnjjCL924AACAPwAAgD8zyEG9e26Sum2bMb51vJQyVisCOuIYZrIAAAAAAAAAAM1oBbyf7eO7CecSvm+pejxurwm9GFT3vQAAgD8AAIA/GuVXvc+aLT6bUXo+FPaHvsaT8z1dJ848AAAAAAAAAADNZCa8H0vIOrwVJ788Tx++woPNvBJAID8AAIA/AAAAAGaSqLzhCqs5poPIvC49SLRh4Bq73qCnMwAAgD8AAIA/Dd6XPY8+VT2q6r+8KiybvnIpYD6HEBC9AAAAAAAAAADmGUM+SxHiPqRTCLypJ+O+sKVYPkUgibwAAAAAAAAAAMZqaT533wM/paSivfrN2b6SuSY+2uePvQAAAAAAAAAAmmzSvMM5Qbr6GLezsbaBriHWzLr/468zAACAPwAAgD+a4P08KeBvuis63Lw8T9oy49UhOl3FoLMAAIA/AAAAAGYasjvcYp4+7lHoPIALvr63fic9XVX3PAAAAAAAAAAAhnLgPmO9Oj9Td2Q+mkshv2smyj7n3Zc8AAAAAAAAAACz7TW994Q5Ptw5nT2cHLa+ZrP0PR9prT0AAAAAAAAAAGZqjj2bM4a85rPVvY5XXD1Syea9H+gpPgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqio0EEu5cECUhpRSlIwBbJRL5YwBdJRHQJn30Fjd56d1fZQoaAZoCWgPQwhSnKOODlBwQJSGlFKUaBVL/2gWR0CZ9/RaX8fndX2UKGgGaAloD0MIB35Uw/5/b0CUhpRSlGgVS+loFkdAmfgttMwlB3V9lChoBmgJaA9DCNKrAUoDhHBAlIaUUpRoFU0AAWgWR0CZ+GRcu8K5dX2UKGgGaAloD0MIXqJ6a2CNTkCUhpRSlGgVS75oFkdAmfmnTI/7i3V9lChoBmgJaA9DCM8UOq8xwXNAlIaUUpRoFU1aAWgWR0CZ+g9nscABdX2UKGgGaAloD0MIJuFCHsG1PkCUhpRSlGgVS6RoFkdAmfq4WtU4rHV9lChoBmgJaA9DCBoUzQMYaHJAlIaUUpRoFUv8aBZHQJn7GOR1X/51fZQoaAZoCWgPQwjsMCb9fTlzQJSGlFKUaBVNHQFoFkdAmfsyIDYAbXV9lChoBmgJaA9DCNp0BHCzSHNAlIaUUpRoFUvjaBZHQJn72X5WRzR1fZQoaAZoCWgPQwjUEFX4c1pxQJSGlFKUaBVLy2gWR0CZ/DKSPluFdX2UKGgGaAloD0MIVFVoIFYtcECUhpRSlGgVS/toFkdAmfxFDrqt5nV9lChoBmgJaA9DCC15PC0/iHBAlIaUUpRoFU0AAWgWR0CZ/InJkoWpdX2UKGgGaAloD0MIuFonLkfbcUCUhpRSlGgVS9doFkdAmf1Gk8A7xXV9lChoBmgJaA9DCMwlVdsNTHJAlIaUUpRoFUv8aBZHQJn9kyckMTh1fZQoaAZoCWgPQwgT8kHPpk1yQJSGlFKUaBVNAgFoFkdAmf309+w1SHV9lChoBmgJaA9DCMJLcOqDt29AlIaUUpRoFUvsaBZHQJn+IQNCqp91fZQoaAZoCWgPQwhBt5c0BgZxQJSGlFKUaBVNHQFoFkdAmf4zUy57PnV9lChoBmgJaA9DCBMNUvAUsHFAlIaUUpRoFU05AWgWR0CZ/mCuEEkjdX2UKGgGaAloD0MIzy10JYK8cECUhpRSlGgVTToBaBZHQJn/VZntfHB1fZQoaAZoCWgPQwjvkGKAxKJwQJSGlFKUaBVL82gWR0CZ/41yeZogdX2UKGgGaAloD0MIGtzWFp6hT0CUhpRSlGgVS8toFkdAmf+q+rU9ZHV9lChoBmgJaA9DCHmVtU3x729AlIaUUpRoFUvraBZHQJn/vupjtol1fZQoaAZoCWgPQwiOlC2SdmJuQJSGlFKUaBVL52gWR0CaALSG8EmqdX2UKGgGaAloD0MI2GSNekjjc0CUhpRSlGgVS/5oFkdAmgErsByS3nV9lChoBmgJaA9DCIC4q1cR/W9AlIaUUpRoFUvqaBZHQJoB14zJp351fZQoaAZoCWgPQwguHAjJAvpHQJSGlFKUaBVLqWgWR0CaAdf6oESvdX2UKGgGaAloD0MIgXueP63BckCUhpRSlGgVTQ4BaBZHQJoCXFwT/Q11fZQoaAZoCWgPQwgU6ukj8LtxQJSGlFKUaBVL9mgWR0CaAmZtvXK9dX2UKGgGaAloD0MICJChYwdBc0CUhpRSlGgVS/VoFkdAmgMb2USqVHV9lChoBmgJaA9DCA4viEhNnXFAlIaUUpRoFUvhaBZHQJoDtsFdLQJ1fZQoaAZoCWgPQwh9PV+zXH1wQJSGlFKUaBVNNgFoFkdAmgO1a8pTdnV9lChoBmgJaA9DCCu+ofDZvG9AlIaUUpRoFU0DAWgWR0CaA8HY6GQCdX2UKGgGaAloD0MIa5+Ox0zuckCUhpRSlGgVS/FoFkdAmgPnPAwfyXV9lChoBmgJaA9DCEMglzhyTHNAlIaUUpRoFU0FAWgWR0CaBEiRGMGYdX2UKGgGaAloD0MIiiE5mTg5cECUhpRSlGgVS+9oFkdAmgVPjbSJCXV9lChoBmgJaA9DCEHyzqHMuHJAlIaUUpRoFUvraBZHQJoFV9G7SRd1fZQoaAZoCWgPQwgbDeAtULJxQJSGlFKUaBVL62gWR0CaBW3RG+bmdX2UKGgGaAloD0MIKZfGLzwKdECUhpRSlGgVS/9oFkdAmgV5iy6cy3V9lChoBmgJaA9DCFaBWgxeD3FAlIaUUpRoFUvnaBZHQJoGVr30wrV1fZQoaAZoCWgPQwheoKTAgoduQJSGlFKUaBVLyGgWR0CaBqmKqGUOdX2UKGgGaAloD0MIg09z8iLFTkCUhpRSlGgVS51oFkdAmgbWqT8pC3V9lChoBmgJaA9DCF9AL9y5BnJAlIaUUpRoFUvNaBZHQJoHP+uNgjR1fZQoaAZoCWgPQwgeMuVDkFdzQJSGlFKUaBVNCQFoFkdAmggw7cO9WnV9lChoBmgJaA9DCFGhurn4s3NAlIaUUpRoFUvGaBZHQJoIZ3np0Op1fZQoaAZoCWgPQwjy7PKtTwNyQJSGlFKUaBVL02gWR0CaCK7l7tzCdX2UKGgGaAloD0MIf9+/ebG/ckCUhpRSlGgVTTIBaBZHQJoJ4Rcu8K51fZQoaAZoCWgPQwg42QbuAAFzQJSGlFKUaBVL62gWR0CaCge6I3zddX2UKGgGaAloD0MIYW9iSE7dcECUhpRSlGgVS9JoFkdAmgqPWH1vl3V9lChoBmgJaA9DCJ5eKcsQq0dAlIaUUpRoFUupaBZHQJoKnM1TBIp1fZQoaAZoCWgPQwjmywuwD5xxQJSGlFKUaBVNHAFoFkdAmgrj6BRQ8HV9lChoBmgJaA9DCDqy8ssg2XBAlIaUUpRoFUv4aBZHQJoLfmq5sj51fZQoaAZoCWgPQwi2+BQAI7xxQJSGlFKUaBVNYgFoFkdAmgx0+HJtBXV9lChoBmgJaA9DCC1agLaVpnBAlIaUUpRoFUvpaBZHQJoMmVqveP91fZQoaAZoCWgPQwiCrRIsDoFxQJSGlFKUaBVNHgFoFkdAmgyXsC1Z1XV9lChoBmgJaA9DCFOVtrjGhnBAlIaUUpRoFUvUaBZHQJoMtbD/EO11fZQoaAZoCWgPQwi9VdehmuxRQJSGlFKUaBVLyWgWR0CaDWXAM2FWdX2UKGgGaAloD0MIdES+S6kDc0CUhpRSlGgVTQgBaBZHQJoNiTwDvE11fZQoaAZoCWgPQwjk+KHSSKxwQJSGlFKUaBVL8mgWR0CaDrDf3vhIdX2UKGgGaAloD0MIlWbzOAyqckCUhpRSlGgVTXIBaBZHQJoOxyS3b211fZQoaAZoCWgPQwhXfEPhM7NxQJSGlFKUaBVL0GgWR0CaD2LTx5LRdX2UKGgGaAloD0MIs0EmGXlBckCUhpRSlGgVS+FoFkdAmg+zaPCEYnV9lChoBmgJaA9DCA02dR4VDnBAlIaUUpRoFU0QAWgWR0CaD8hhYvFndX2UKGgGaAloD0MILsbAOg4vcUCUhpRSlGgVS+hoFkdAmhB8FQl8gXV9lChoBmgJaA9DCEfmkT9Y0HFAlIaUUpRoFUvvaBZHQJoQnONYKY11fZQoaAZoCWgPQwi6aTNOQ7VvQJSGlFKUaBVL8mgWR0CaEPuf29L6dX2UKGgGaAloD0MIUtSZe4jgcECUhpRSlGgVS+FoFkdAmhEny3CsO3V9lChoBmgJaA9DCLlvtU7cNnJAlIaUUpRoFUvKaBZHQJoRmKhtcfN1fZQoaAZoCWgPQwgkfO9v0M5KQJSGlFKUaBVLq2gWR0CaEcgxrSE2dX2UKGgGaAloD0MISE+RQwTxckCUhpRSlGgVS+xoFkdAmhJNzjm0V3V9lChoBmgJaA9DCLecS3HVj3FAlIaUUpRoFUv2aBZHQJoSwjt5UtJ1fZQoaAZoCWgPQwjMejGUE9pxQJSGlFKUaBVL/mgWR0CaEtiHqNZNdX2UKGgGaAloD0MIExCTcKH7bkCUhpRSlGgVS/loFkdAmhOB+OOsDHV9lChoBmgJaA9DCM9Nm3Ga1nFAlIaUUpRoFUvvaBZHQJoUkPxx1gZ1fZQoaAZoCWgPQwjfpj/7EWlwQJSGlFKUaBVL3GgWR0CaFK1n/T9bdX2UKGgGaAloD0MIZcbbSu+EcUCUhpRSlGgVS+FoFkdAmhUUmICU5nV9lChoBmgJaA9DCOyEl+AUfnNAlIaUUpRoFU0kAWgWR0CaFdw4bS7YdX2UKGgGaAloD0MIdsWM8PZ+ckCUhpRSlGgVS/5oFkdAmhX2Nm16V3V9lChoBmgJaA9DCMi3dw26ZHFAlIaUUpRoFUvNaBZHQJoWM6Mir1d1fZQoaAZoCWgPQwjv/niv2jdyQJSGlFKUaBVL12gWR0CaFkYqXnhbdX2UKGgGaAloD0MIs874vrghbkCUhpRSlGgVS/loFkdAmhacO9WZJHV9lChoBmgJaA9DCDlf7L14CHNAlIaUUpRoFUv2aBZHQJoWqYfGMn91fZQoaAZoCWgPQwjTaHIxRrxwQJSGlFKUaBVL1mgWR0CaFxadtl7MdX2UKGgGaAloD0MISbn7HF9Qc0CUhpRSlGgVS+5oFkdAmhd0I1LrX3V9lChoBmgJaA9DCOmayTdbt3BAlIaUUpRoFUv9aBZHQJoYgvIwM6R1fZQoaAZoCWgPQwi6hhkaj5RyQJSGlFKUaBVNGwFoFkdAmhoAKfFrEnV9lChoBmgJaA9DCMiW5etyq3FAlIaUUpRoFUvRaBZHQJoaBreqJdl1fZQoaAZoCWgPQwibPdAKDLViQJSGlFKUaBVN6ANoFkdAmhofq9oN/nV9lChoBmgJaA9DCAA3ixcL829AlIaUUpRoFU0NAWgWR0CaGmP91loUdX2UKGgGaAloD0MI+1qXGqF2bkCUhpRSlGgVS+doFkdAmhqG0u14PnV9lChoBmgJaA9DCNfep6rQwHFAlIaUUpRoFUvOaBZHQJobJ2St/4J1fZQoaAZoCWgPQwgDsWzmUJBxQJSGlFKUaBVLwmgWR0CaG5wpvxYrdX2UKGgGaAloD0MISb4SSMmHcUCUhpRSlGgVTQQBaBZHQJob1E2HclB1fZQoaAZoCWgPQwijrrX3KR9xQJSGlFKUaBVL0mgWR0CaHBb7CSA6dX2UKGgGaAloD0MIW7OVl/zhbkCUhpRSlGgVS/JoFkdAmhxthJAdGXV9lChoBmgJaA9DCG3lJf/TFnFAlIaUUpRoFUvwaBZHQJoccsVclgN1fZQoaAZoCWgPQwgW3A94YLRwQJSGlFKUaBVL/2gWR0CaHIRSgoPTdX2UKGgGaAloD0MIVrjlI2kOcUCUhpRSlGgVS/VoFkdAmh20DEFW4nV9lChoBmgJaA9DCK6ek963EW9AlIaUUpRoFU22AWgWR0CaHcyp71IzdX2UKGgGaAloD0MICttPxvg4cUCUhpRSlGgVTQoBaBZHQJod1W/8EV51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 276, "n_steps": 2048, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f46e4e95a70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f46e4e95b00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f46e4e95b90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f46e4e95c20>", "_build": "<function ActorCriticPolicy._build at 0x7f46e4e95cb0>", "forward": "<function ActorCriticPolicy.forward at 0x7f46e4e95d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f46e4e95dd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f46e4e95e60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f46e4e95ef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f46e4e95f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f46e4e9a050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f46e4ee2840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651930580.0388641, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADPg2zytCBW962zmu5Oq7jwlTDw91v+IPQAAgD8AAIA/ABCMutu/nrzFyTy+LUAFvVVigz17lFS+AACAPwAAgD+a3fI7/V0jPv//hrxx97q+sT0Xvf/TlLoAAAAAAAAAAJODNr4svb0++rC0PpKG2r5AKaO9i8CTPgAAAAAAAAAAgNsHvqCd2T6aWAs+gvL7vt/eoL26yR0+AAAAAAAAAADtsAc+25+uPspvKr+yNdq+ycfOvYNz1r4AAAAAAAAAALNwGb3X8yq5khngvZ4lML5t93U9CwADPwAAAAAAAIA/5mlrPR/fDT/fmg6+nTHlvmNRB73SGCS9AAAAAAAAAAAA5SW9gBAEP06UjTzr/R6/6GDwvJoJJLwAAAAAAAAAAGa05bwUqJK6i3V/slym8q5iACK6tR7lMgAAgD8AAIA/DU1Qvt/dED8idD476VoHv6a+jr5qBBM+AAAAAAAAAACaSCU9PjitP3RZJz4m186+qoGOvB6TFD0AAAAAAAAAAAaCjj7fo2U/A6s9vXRWHb/sZco+6l6PvgAAAAAAAAAAGjlnvbguurmCuEgzjowGsKch7jq2iMSzAACAPwAAgD+aX0u8poyZP6R8l71N8SS/rXgQvWM5gL0AAAAAAAAAAM0Vw7ykspg+U8hJPSGrxL7AMaA65cF1PQAAAAAAAAAAGq1HvlagFj8csho+9KQiv3ERhb6lvVs+AAAAAAAAAADNDPs5jsm1Pz8uhDx5DeQ9b4ANus3pbLsAAAAAAAAAAGbutLzhnJO6kj8KO3r5XjUR60q6TTtUNAAAAAAAAAAAZtk7PswkFD8B2jO+IPIPv30WXj4aHmm+AAAAAAAAAAAzhhE9TLGwPhdYrDvAxta+iIfJuzIURz0AAAAAAAAAADMXGrxP8FC8rR62O5KqfjyG1Ls9AuhQvQAAgD8AAIA/TRQPPcQypz35kMa9R72Rvglpgr1zXHm9AAAAAAAAAADNcjm8zmSgPlyClL2qMg+/LNuCvLG7KL0AAAAAAAAAALNxSz3cnU09QoImvsfspr7ASBu+WnQ/PAAAAAAAAAAAM294Pr0XYT/iqh09wZkCv0+hzD51XGe9AAAAAAAAAADa0J49mWM+Pn6afL6tXKW+XI0yvi6+ob0AAAAAAAAAAFplzr350LE/EmjXvnRmob4ag0i+gVzFvgAAAAAAAAAAADtKvStDez/Trzq+Zr4tv+A6z729alC9AAAAAAAAAABmBTy9qY9wvP3kdj4tSei94i9mvXOxaj0AAIA/AACAP2YNvL2h6Yo/jWgBvmSPHr+TnIG+Ds2SvAAAAAAAAAAAAOjfPNLsiT6i1R2/C5PSvu9yxr3KEta+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgQhx5WyrbkCUhpRSlIwBbJRL5YwBdJRHQLiWkMMqjJx1fZQoaAZoCWgPQwhhbvdyH4NwQJSGlFKUaBVL62gWR0C4lt0EgW8AdX2UKGgGaAloD0MIiQlq+NakcUCUhpRSlGgVS7doFkdAuJbpKCg9NnV9lChoBmgJaA9DCOpcUUqIgHJAlIaUUpRoFUvTaBZHQLiW6j/dZaF1fZQoaAZoCWgPQwi932jHDbxxQJSGlFKUaBVL8WgWR0C4lvj6eoUBdX2UKGgGaAloD0MIqbwd4fRtc0CUhpRSlGgVS9VoFkdAuJb771qWT3V9lChoBmgJaA9DCNOE7SejpXFAlIaUUpRoFUu+aBZHQLiW/BUrCnB1fZQoaAZoCWgPQwgShCugEFlyQJSGlFKUaBVL6mgWR0C4lw3ARChOdX2UKGgGaAloD0MIofSFkLOyc0CUhpRSlGgVS75oFkdAuJcW+pOvdXV9lChoBmgJaA9DCCTRyyjWBHBAlIaUUpRoFUvPaBZHQLiXGG5c1O11fZQoaAZoCWgPQwjPoQxVMdUXwJSGlFKUaBVLY2gWR0C4lyAeJYT1dX2UKGgGaAloD0MIgXozaj6GcUCUhpRSlGgVS+hoFkdAuJczbh3qzXV9lChoBmgJaA9DCLn+XZ/5zHJAlIaUUpRoFUvEaBZHQLiXNi7Ciyp1fZQoaAZoCWgPQwgs8uuHGAJwQJSGlFKUaBVL4mgWR0C4l1mFvhqCdX2UKGgGaAloD0MI56ij4yovcUCUhpRSlGgVS79oFkdAuJdjBfrrxHV9lChoBmgJaA9DCJ/MP/rmtnBAlIaUUpRoFUvgaBZHQLiXhySFGod1fZQoaAZoCWgPQwg+B5YjJEZ0QJSGlFKUaBVL3mgWR0C4l5YxxkupdX2UKGgGaAloD0MIuHU3T/VmckCUhpRSlGgVS+VoFkdAuJeqhAWznnV9lChoBmgJaA9DCHPaU3JO0HBAlIaUUpRoFUvhaBZHQLiXuH2h7E51fZQoaAZoCWgPQwjvxRftMXxyQJSGlFKUaBVL7GgWR0C4l7qyjYZmdX2UKGgGaAloD0MIvDydK0rFcECUhpRSlGgVS8RoFkdAuJe88+zMR3V9lChoBmgJaA9DCKJGIcks73FAlIaUUpRoFUvLaBZHQLiX1aMrEtN1fZQoaAZoCWgPQwhJSKRtfBdyQJSGlFKUaBVL0WgWR0C4l+XWBjFydX2UKGgGaAloD0MIxsN7DiwzNUCUhpRSlGgVS21oFkdAuJfoRSP2f3V9lChoBmgJaA9DCFd4l4v4+3JAlIaUUpRoFUvBaBZHQLiYCMb3oLZ1fZQoaAZoCWgPQwhR3Vz87f9xQJSGlFKUaBVL5WgWR0C4mBJ4bCJodX2UKGgGaAloD0MIck7soT2Mc0CUhpRSlGgVS7toFkdAuJgnBLwnY3V9lChoBmgJaA9DCN9rCI7L729AlIaUUpRoFUvZaBZHQLiYKEJSiud1fZQoaAZoCWgPQwj1vYbguLNzQJSGlFKUaBVL6WgWR0C4mErs0HhTdX2UKGgGaAloD0MIAS8zbJQ+ckCUhpRSlGgVS95oFkdAuJhTEn9ehXV9lChoBmgJaA9DCFG8ytqmr3NAlIaUUpRoFUvlaBZHQLiYcCFsYVJ1fZQoaAZoCWgPQwjr/xzmy2xzQJSGlFKUaBVL+WgWR0C4mHSn1nM/dX2UKGgGaAloD0MI1ldXBSo5c0CUhpRSlGgVS7NoFkdAuJh2peeFtnV9lChoBmgJaA9DCMXFUbmJoERAlIaUUpRoFUt/aBZHQLiYeb5/LDB1fZQoaAZoCWgPQwgjh4ibU+dxQJSGlFKUaBVNAgFoFkdAuJijAbhm5HV9lChoBmgJaA9DCL2rHjDPhHFAlIaUUpRoFUv7aBZHQLiYr+SbH6x1fZQoaAZoCWgPQwhFaAQbF89yQJSGlFKUaBVL0mgWR0C4mLqJEYwZdX2UKGgGaAloD0MIfH4YITx+OUCUhpRSlGgVS4NoFkdAuJi9UEPlMnV9lChoBmgJaA9DCN5aJsMx7HFAlIaUUpRoFUvYaBZHQLiY2+xW1dB1fZQoaAZoCWgPQwgcXhCRmp5xQJSGlFKUaBVL3GgWR0C4mOJtm+TNdX2UKGgGaAloD0MI4h5LHzoVckCUhpRSlGgVS+poFkdAuJjm+AVfu3V9lChoBmgJaA9DCFrVko5ys3JAlIaUUpRoFUvMaBZHQLiY6MXrMTx1fZQoaAZoCWgPQwgr3sg8cuFwQJSGlFKUaBVL5GgWR0C4mRVVPva2dX2UKGgGaAloD0MIp0BmZxFgcUCUhpRSlGgVS/BoFkdAuJkmp4rz5HV9lChoBmgJaA9DCPhvXpx4d3FAlIaUUpRoFUvfaBZHQLiZKutwJgN1fZQoaAZoCWgPQwjScTWyKwRwQJSGlFKUaBVL62gWR0C4mUeloDgZdX2UKGgGaAloD0MIjWMke4RGQkCUhpRSlGgVS4VoFkdAuJlYYzi0fHV9lChoBmgJaA9DCPxyZrtCHUtAlIaUUpRoFUtnaBZHQLiZYyoXKr91fZQoaAZoCWgPQwgdyeU/ZLJzQJSGlFKUaBVNCgFoFkdAuJls+6iCa3V9lChoBmgJaA9DCBQi4BCqDkZAlIaUUpRoFUuPaBZHQLiZcWDHwPR1fZQoaAZoCWgPQwjA7J48rBhzQJSGlFKUaBVLxWgWR0C4mXoyTINmdX2UKGgGaAloD0MI+weRDLkucUCUhpRSlGgVS+RoFkdAuJmMldC3PXV9lChoBmgJaA9DCNyg9ls7u0hAlIaUUpRoFUuBaBZHQLiZmmLLpzN1fZQoaAZoCWgPQwh15bM8T/5yQJSGlFKUaBVL02gWR0C4mZpxm03PdX2UKGgGaAloD0MI4pANpMshckCUhpRSlGgVTQUBaBZHQLiZsD5j6N51fZQoaAZoCWgPQwhJvhJICfFxQJSGlFKUaBVL3WgWR0C4mci5I6KcdX2UKGgGaAloD0MIXiuhuyRcRECUhpRSlGgVS3doFkdAuJnJz5oGp3V9lChoBmgJaA9DCAJlU67wA1BAlIaUUpRoFUuIaBZHQLiZ4rSE12t1fZQoaAZoCWgPQwg0EwznWnVxQJSGlFKUaBVL4mgWR0C4meUHt4RmdX2UKGgGaAloD0MIKZZbWg1FbkCUhpRSlGgVS89oFkdAuJnoeuFHrnV9lChoBmgJaA9DCGO0jqpmd3BAlIaUUpRoFUv5aBZHQLiZ6jC53C91fZQoaAZoCWgPQwj/XgoPmk9wQJSGlFKUaBVLumgWR0C4mfd2LYPHdX2UKGgGaAloD0MI9bhvtY53cUCUhpRSlGgVS91oFkdAuJn8v114gXV9lChoBmgJaA9DCL8prFSQpHBAlIaUUpRoFUu2aBZHQLiaB64Ds+p1fZQoaAZoCWgPQwhhcTjz6yVzQJSGlFKUaBVL8WgWR0C4mgaX8fmtdX2UKGgGaAloD0MIbqZCPFKgcECUhpRSlGgVS+hoFkdAuJpRBTn7pHV9lChoBmgJaA9DCCXpmsk3i3JAlIaUUpRoFUuxaBZHQLiabgtvn8t1fZQoaAZoCWgPQwhClC9ooSJyQJSGlFKUaBVLzmgWR0C4mm5TdcjadX2UKGgGaAloD0MIHaopyTrsJ0CUhpRSlGgVS1NoFkdAuJp/8Nx2jnV9lChoBmgJaA9DCI4hADi27HFAlIaUUpRoFUv7aBZHQLiap5vcafl1fZQoaAZoCWgPQwjDKt7IPBpyQJSGlFKUaBVL7mgWR0C4mtOtOmBOdX2UKGgGaAloD0MImx2pvjOackCUhpRSlGgVS+FoFkdAuJrjsmfGuXV9lChoBmgJaA9DCGXequuQ9nFAlIaUUpRoFUvHaBZHQLia6wV0tAd1fZQoaAZoCWgPQwi8PnPW50pzQJSGlFKUaBVL02gWR0C4mwM2NvOydX2UKGgGaAloD0MIIhgHl86dcECUhpRSlGgVS/RoFkdAuJsMAksz23V9lChoBmgJaA9DCNaO4hx1UERAlIaUUpRoFUuKaBZHQLibJhR64Uh1fZQoaAZoCWgPQwifckwW97tyQJSGlFKUaBVLyWgWR0C4mz1NcnmadX2UKGgGaAloD0MIgBE0ZtKvckCUhpRSlGgVS7hoFkdAuJtDGHYYi3V9lChoBmgJaA9DCAfRWtHmiCvAlIaUUpRoFUtWaBZHQLibUxvegth1fZQoaAZoCWgPQwi9x5kmbB10QJSGlFKUaBVNnwFoFkdAuJtkTURWcXV9lChoBmgJaA9DCB3pDIw8B3FAlIaUUpRoFUvjaBZHQLibaADaGpN1fZQoaAZoCWgPQwg3xeOiGrVzQJSGlFKUaBVLymgWR0C4m3ZVwPy1dX2UKGgGaAloD0MIc0f/y/WpcUCUhpRSlGgVS+BoFkdAuJt5lBhQWXV9lChoBmgJaA9DCP8fJ0wYW05AlIaUUpRoFUt7aBZHQLibhdu5z5p1fZQoaAZoCWgPQwiBI4EGm1ZyQJSGlFKUaBVL6mgWR0C4m4ltfoicdX2UKGgGaAloD0MIP28qUqFtcUCUhpRSlGgVTREBaBZHQLibkzPKMeh1fZQoaAZoCWgPQwgMkGgCRXQ7QJSGlFKUaBVLdmgWR0C4m5evZAY6dX2UKGgGaAloD0MImIbhI+LWcUCUhpRSlGgVS/5oFkdAuJubfqHGj3V9lChoBmgJaA9DCB2Txf1HmnNAlIaUUpRoFUvAaBZHQLibrTmW+oN1fZQoaAZoCWgPQwh65A8GHk1wQJSGlFKUaBVL2WgWR0C4m7Jl4C6pdX2UKGgGaAloD0MIcqPIWoOzckCUhpRSlGgVS7VoFkdAuJu7Nt65XnV9lChoBmgJaA9DCN4gWivaHHJAlIaUUpRoFUu8aBZHQLibvsUIsy11fZQoaAZoCWgPQwhe9YB5CPFyQJSGlFKUaBVL9mgWR0C4m8w75mAcdX2UKGgGaAloD0MI2IFzRpQucECUhpRSlGgVS9FoFkdAuJvT557gKnV9lChoBmgJaA9DCKUTCaZa53BAlIaUUpRoFUvzaBZHQLicA2aDwph1fZQoaAZoCWgPQwiT36KTpVZxQJSGlFKUaBVL42gWR0C4nB6WkadddX2UKGgGaAloD0MIu0ihLHxmcUCUhpRSlGgVS/BoFkdAuJwsBuGbkXV9lChoBmgJaA9DCOBkG7jDL3NAlIaUUpRoFU1wAWgWR0C4nDAuh9LIdX2UKGgGaAloD0MIVDntKXnrcECUhpRSlGgVS/loFkdAuJwzBLwnY3V9lChoBmgJaA9DCBKfO8H+sU9AlIaUUpRoFUtjaBZHQLicVg1FYuF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 8, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:24d8fe81efce0bc0ac59c47fc17fbf56f5f580abf5b6c5f80efbcfbeb6b684f2
3
- size 144019
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77ce9dce4b2083a1a52b578749ef6d5d681baa69d79d70d6555e35189fe7b82e
3
+ size 144690
ppo-LunarLander-v2/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fee7362f200>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fee7362f290>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fee7362f320>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fee7362f3b0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fee7362f440>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fee7362f4d0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fee7362f560>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fee7362f5f0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fee7362f680>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fee7362f710>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fee7362f7a0>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fee7366dea0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -41,13 +41,13 @@
41
  "dtype": "int64",
42
  "_np_random": null
43
  },
44
- "n_envs": 16,
45
- "num_timesteps": 1507328,
46
- "_total_timesteps": 1500000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1651850598.9201546,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,34 +56,34 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM045DtclxS6RsAVOPosPzODrg+7g+kvtwAAgD8AAIA/MzjwPI9OWLq3Nb05GmliNEbSnjjCL924AACAPwAAgD8zyEG9e26Sum2bMb51vJQyVisCOuIYZrIAAAAAAAAAAM1oBbyf7eO7CecSvm+pejxurwm9GFT3vQAAgD8AAIA/GuVXvc+aLT6bUXo+FPaHvsaT8z1dJ848AAAAAAAAAADNZCa8H0vIOrwVJ788Tx++woPNvBJAID8AAIA/AAAAAGaSqLzhCqs5poPIvC49SLRh4Bq73qCnMwAAgD8AAIA/Dd6XPY8+VT2q6r+8KiybvnIpYD6HEBC9AAAAAAAAAADmGUM+SxHiPqRTCLypJ+O+sKVYPkUgibwAAAAAAAAAAMZqaT533wM/paSivfrN2b6SuSY+2uePvQAAAAAAAAAAmmzSvMM5Qbr6GLezsbaBriHWzLr/468zAACAPwAAgD+a4P08KeBvuis63Lw8T9oy49UhOl3FoLMAAIA/AAAAAGYasjvcYp4+7lHoPIALvr63fic9XVX3PAAAAAAAAAAAhnLgPmO9Oj9Td2Q+mkshv2smyj7n3Zc8AAAAAAAAAACz7TW994Q5Ptw5nT2cHLa+ZrP0PR9prT0AAAAAAAAAAGZqjj2bM4a85rPVvY5XXD1Syea9H+gpPgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.004885333333333408,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVOBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqio0EEu5cECUhpRSlIwBbJRL5YwBdJRHQJn30Fjd56d1fZQoaAZoCWgPQwhSnKOODlBwQJSGlFKUaBVL/2gWR0CZ9/RaX8fndX2UKGgGaAloD0MIB35Uw/5/b0CUhpRSlGgVS+loFkdAmfgttMwlB3V9lChoBmgJaA9DCNKrAUoDhHBAlIaUUpRoFU0AAWgWR0CZ+GRcu8K5dX2UKGgGaAloD0MIXqJ6a2CNTkCUhpRSlGgVS75oFkdAmfmnTI/7i3V9lChoBmgJaA9DCM8UOq8xwXNAlIaUUpRoFU1aAWgWR0CZ+g9nscABdX2UKGgGaAloD0MIJuFCHsG1PkCUhpRSlGgVS6RoFkdAmfq4WtU4rHV9lChoBmgJaA9DCBoUzQMYaHJAlIaUUpRoFUv8aBZHQJn7GOR1X/51fZQoaAZoCWgPQwjsMCb9fTlzQJSGlFKUaBVNHQFoFkdAmfsyIDYAbXV9lChoBmgJaA9DCNp0BHCzSHNAlIaUUpRoFUvjaBZHQJn72X5WRzR1fZQoaAZoCWgPQwjUEFX4c1pxQJSGlFKUaBVLy2gWR0CZ/DKSPluFdX2UKGgGaAloD0MIVFVoIFYtcECUhpRSlGgVS/toFkdAmfxFDrqt5nV9lChoBmgJaA9DCC15PC0/iHBAlIaUUpRoFU0AAWgWR0CZ/InJkoWpdX2UKGgGaAloD0MIuFonLkfbcUCUhpRSlGgVS9doFkdAmf1Gk8A7xXV9lChoBmgJaA9DCMwlVdsNTHJAlIaUUpRoFUv8aBZHQJn9kyckMTh1fZQoaAZoCWgPQwgT8kHPpk1yQJSGlFKUaBVNAgFoFkdAmf309+w1SHV9lChoBmgJaA9DCMJLcOqDt29AlIaUUpRoFUvsaBZHQJn+IQNCqp91fZQoaAZoCWgPQwhBt5c0BgZxQJSGlFKUaBVNHQFoFkdAmf4zUy57PnV9lChoBmgJaA9DCBMNUvAUsHFAlIaUUpRoFU05AWgWR0CZ/mCuEEkjdX2UKGgGaAloD0MIzy10JYK8cECUhpRSlGgVTToBaBZHQJn/VZntfHB1fZQoaAZoCWgPQwjvkGKAxKJwQJSGlFKUaBVL82gWR0CZ/41yeZogdX2UKGgGaAloD0MIGtzWFp6hT0CUhpRSlGgVS8toFkdAmf+q+rU9ZHV9lChoBmgJaA9DCHmVtU3x729AlIaUUpRoFUvraBZHQJn/vupjtol1fZQoaAZoCWgPQwiOlC2SdmJuQJSGlFKUaBVL52gWR0CaALSG8EmqdX2UKGgGaAloD0MI2GSNekjjc0CUhpRSlGgVS/5oFkdAmgErsByS3nV9lChoBmgJaA9DCIC4q1cR/W9AlIaUUpRoFUvqaBZHQJoB14zJp351fZQoaAZoCWgPQwguHAjJAvpHQJSGlFKUaBVLqWgWR0CaAdf6oESvdX2UKGgGaAloD0MIgXueP63BckCUhpRSlGgVTQ4BaBZHQJoCXFwT/Q11fZQoaAZoCWgPQwgU6ukj8LtxQJSGlFKUaBVL9mgWR0CaAmZtvXK9dX2UKGgGaAloD0MICJChYwdBc0CUhpRSlGgVS/VoFkdAmgMb2USqVHV9lChoBmgJaA9DCA4viEhNnXFAlIaUUpRoFUvhaBZHQJoDtsFdLQJ1fZQoaAZoCWgPQwh9PV+zXH1wQJSGlFKUaBVNNgFoFkdAmgO1a8pTdnV9lChoBmgJaA9DCCu+ofDZvG9AlIaUUpRoFU0DAWgWR0CaA8HY6GQCdX2UKGgGaAloD0MIa5+Ox0zuckCUhpRSlGgVS/FoFkdAmgPnPAwfyXV9lChoBmgJaA9DCEMglzhyTHNAlIaUUpRoFU0FAWgWR0CaBEiRGMGYdX2UKGgGaAloD0MIiiE5mTg5cECUhpRSlGgVS+9oFkdAmgVPjbSJCXV9lChoBmgJaA9DCEHyzqHMuHJAlIaUUpRoFUvraBZHQJoFV9G7SRd1fZQoaAZoCWgPQwgbDeAtULJxQJSGlFKUaBVL62gWR0CaBW3RG+bmdX2UKGgGaAloD0MIKZfGLzwKdECUhpRSlGgVS/9oFkdAmgV5iy6cy3V9lChoBmgJaA9DCFaBWgxeD3FAlIaUUpRoFUvnaBZHQJoGVr30wrV1fZQoaAZoCWgPQwheoKTAgoduQJSGlFKUaBVLyGgWR0CaBqmKqGUOdX2UKGgGaAloD0MIg09z8iLFTkCUhpRSlGgVS51oFkdAmgbWqT8pC3V9lChoBmgJaA9DCF9AL9y5BnJAlIaUUpRoFUvNaBZHQJoHP+uNgjR1fZQoaAZoCWgPQwgeMuVDkFdzQJSGlFKUaBVNCQFoFkdAmggw7cO9WnV9lChoBmgJaA9DCFGhurn4s3NAlIaUUpRoFUvGaBZHQJoIZ3np0Op1fZQoaAZoCWgPQwjy7PKtTwNyQJSGlFKUaBVL02gWR0CaCK7l7tzCdX2UKGgGaAloD0MIf9+/ebG/ckCUhpRSlGgVTTIBaBZHQJoJ4Rcu8K51fZQoaAZoCWgPQwg42QbuAAFzQJSGlFKUaBVL62gWR0CaCge6I3zddX2UKGgGaAloD0MIYW9iSE7dcECUhpRSlGgVS9JoFkdAmgqPWH1vl3V9lChoBmgJaA9DCJ5eKcsQq0dAlIaUUpRoFUupaBZHQJoKnM1TBIp1fZQoaAZoCWgPQwjmywuwD5xxQJSGlFKUaBVNHAFoFkdAmgrj6BRQ8HV9lChoBmgJaA9DCDqy8ssg2XBAlIaUUpRoFUv4aBZHQJoLfmq5sj51fZQoaAZoCWgPQwi2+BQAI7xxQJSGlFKUaBVNYgFoFkdAmgx0+HJtBXV9lChoBmgJaA9DCC1agLaVpnBAlIaUUpRoFUvpaBZHQJoMmVqveP91fZQoaAZoCWgPQwiCrRIsDoFxQJSGlFKUaBVNHgFoFkdAmgyXsC1Z1XV9lChoBmgJaA9DCFOVtrjGhnBAlIaUUpRoFUvUaBZHQJoMtbD/EO11fZQoaAZoCWgPQwi9VdehmuxRQJSGlFKUaBVLyWgWR0CaDWXAM2FWdX2UKGgGaAloD0MIdES+S6kDc0CUhpRSlGgVTQgBaBZHQJoNiTwDvE11fZQoaAZoCWgPQwjk+KHSSKxwQJSGlFKUaBVL8mgWR0CaDrDf3vhIdX2UKGgGaAloD0MIlWbzOAyqckCUhpRSlGgVTXIBaBZHQJoOxyS3b211fZQoaAZoCWgPQwhXfEPhM7NxQJSGlFKUaBVL0GgWR0CaD2LTx5LRdX2UKGgGaAloD0MIs0EmGXlBckCUhpRSlGgVS+FoFkdAmg+zaPCEYnV9lChoBmgJaA9DCA02dR4VDnBAlIaUUpRoFU0QAWgWR0CaD8hhYvFndX2UKGgGaAloD0MILsbAOg4vcUCUhpRSlGgVS+hoFkdAmhB8FQl8gXV9lChoBmgJaA9DCEfmkT9Y0HFAlIaUUpRoFUvvaBZHQJoQnONYKY11fZQoaAZoCWgPQwi6aTNOQ7VvQJSGlFKUaBVL8mgWR0CaEPuf29L6dX2UKGgGaAloD0MIUtSZe4jgcECUhpRSlGgVS+FoFkdAmhEny3CsO3V9lChoBmgJaA9DCLlvtU7cNnJAlIaUUpRoFUvKaBZHQJoRmKhtcfN1fZQoaAZoCWgPQwgkfO9v0M5KQJSGlFKUaBVLq2gWR0CaEcgxrSE2dX2UKGgGaAloD0MISE+RQwTxckCUhpRSlGgVS+xoFkdAmhJNzjm0V3V9lChoBmgJaA9DCLecS3HVj3FAlIaUUpRoFUv2aBZHQJoSwjt5UtJ1fZQoaAZoCWgPQwjMejGUE9pxQJSGlFKUaBVL/mgWR0CaEtiHqNZNdX2UKGgGaAloD0MIExCTcKH7bkCUhpRSlGgVS/loFkdAmhOB+OOsDHV9lChoBmgJaA9DCM9Nm3Ga1nFAlIaUUpRoFUvvaBZHQJoUkPxx1gZ1fZQoaAZoCWgPQwjfpj/7EWlwQJSGlFKUaBVL3GgWR0CaFK1n/T9bdX2UKGgGaAloD0MIZcbbSu+EcUCUhpRSlGgVS+FoFkdAmhUUmICU5nV9lChoBmgJaA9DCOyEl+AUfnNAlIaUUpRoFU0kAWgWR0CaFdw4bS7YdX2UKGgGaAloD0MIdsWM8PZ+ckCUhpRSlGgVS/5oFkdAmhX2Nm16V3V9lChoBmgJaA9DCMi3dw26ZHFAlIaUUpRoFUvNaBZHQJoWM6Mir1d1fZQoaAZoCWgPQwjv/niv2jdyQJSGlFKUaBVL12gWR0CaFkYqXnhbdX2UKGgGaAloD0MIs874vrghbkCUhpRSlGgVS/loFkdAmhacO9WZJHV9lChoBmgJaA9DCDlf7L14CHNAlIaUUpRoFUv2aBZHQJoWqYfGMn91fZQoaAZoCWgPQwjTaHIxRrxwQJSGlFKUaBVL1mgWR0CaFxadtl7MdX2UKGgGaAloD0MISbn7HF9Qc0CUhpRSlGgVS+5oFkdAmhd0I1LrX3V9lChoBmgJaA9DCOmayTdbt3BAlIaUUpRoFUv9aBZHQJoYgvIwM6R1fZQoaAZoCWgPQwi6hhkaj5RyQJSGlFKUaBVNGwFoFkdAmhoAKfFrEnV9lChoBmgJaA9DCMiW5etyq3FAlIaUUpRoFUvRaBZHQJoaBreqJdl1fZQoaAZoCWgPQwibPdAKDLViQJSGlFKUaBVN6ANoFkdAmhofq9oN/nV9lChoBmgJaA9DCAA3ixcL829AlIaUUpRoFU0NAWgWR0CaGmP91loUdX2UKGgGaAloD0MI+1qXGqF2bkCUhpRSlGgVS+doFkdAmhqG0u14PnV9lChoBmgJaA9DCNfep6rQwHFAlIaUUpRoFUvOaBZHQJobJ2St/4J1fZQoaAZoCWgPQwgDsWzmUJBxQJSGlFKUaBVLwmgWR0CaG5wpvxYrdX2UKGgGaAloD0MISb4SSMmHcUCUhpRSlGgVTQQBaBZHQJob1E2HclB1fZQoaAZoCWgPQwijrrX3KR9xQJSGlFKUaBVL0mgWR0CaHBb7CSA6dX2UKGgGaAloD0MIW7OVl/zhbkCUhpRSlGgVS/JoFkdAmhxthJAdGXV9lChoBmgJaA9DCG3lJf/TFnFAlIaUUpRoFUvwaBZHQJoccsVclgN1fZQoaAZoCWgPQwgW3A94YLRwQJSGlFKUaBVL/2gWR0CaHIRSgoPTdX2UKGgGaAloD0MIVrjlI2kOcUCUhpRSlGgVS/VoFkdAmh20DEFW4nV9lChoBmgJaA9DCK6ek963EW9AlIaUUpRoFU22AWgWR0CaHcyp71IzdX2UKGgGaAloD0MICttPxvg4cUCUhpRSlGgVTQoBaBZHQJod1W/8EV51ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 276,
79
- "n_steps": 2048,
80
  "gamma": 0.9999,
81
  "gae_lambda": 0.98,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
- "batch_size": 64,
86
- "n_epochs": 6,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f46e4e95a70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f46e4e95b00>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f46e4e95b90>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f46e4e95c20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f46e4e95cb0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f46e4e95d40>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f46e4e95dd0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f46e4e95e60>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f46e4e95ef0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f46e4e95f80>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f46e4e9a050>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f46e4ee2840>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
41
  "dtype": "int64",
42
  "_np_random": null
43
  },
44
+ "n_envs": 32,
45
+ "num_timesteps": 2031616,
46
+ "_total_timesteps": 2000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1651930580.0388641,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADPg2zytCBW962zmu5Oq7jwlTDw91v+IPQAAgD8AAIA/ABCMutu/nrzFyTy+LUAFvVVigz17lFS+AACAPwAAgD+a3fI7/V0jPv//hrxx97q+sT0Xvf/TlLoAAAAAAAAAAJODNr4svb0++rC0PpKG2r5AKaO9i8CTPgAAAAAAAAAAgNsHvqCd2T6aWAs+gvL7vt/eoL26yR0+AAAAAAAAAADtsAc+25+uPspvKr+yNdq+ycfOvYNz1r4AAAAAAAAAALNwGb3X8yq5khngvZ4lML5t93U9CwADPwAAAAAAAIA/5mlrPR/fDT/fmg6+nTHlvmNRB73SGCS9AAAAAAAAAAAA5SW9gBAEP06UjTzr/R6/6GDwvJoJJLwAAAAAAAAAAGa05bwUqJK6i3V/slym8q5iACK6tR7lMgAAgD8AAIA/DU1Qvt/dED8idD476VoHv6a+jr5qBBM+AAAAAAAAAACaSCU9PjitP3RZJz4m186+qoGOvB6TFD0AAAAAAAAAAAaCjj7fo2U/A6s9vXRWHb/sZco+6l6PvgAAAAAAAAAAGjlnvbguurmCuEgzjowGsKch7jq2iMSzAACAPwAAgD+aX0u8poyZP6R8l71N8SS/rXgQvWM5gL0AAAAAAAAAAM0Vw7ykspg+U8hJPSGrxL7AMaA65cF1PQAAAAAAAAAAGq1HvlagFj8csho+9KQiv3ERhb6lvVs+AAAAAAAAAADNDPs5jsm1Pz8uhDx5DeQ9b4ANus3pbLsAAAAAAAAAAGbutLzhnJO6kj8KO3r5XjUR60q6TTtUNAAAAAAAAAAAZtk7PswkFD8B2jO+IPIPv30WXj4aHmm+AAAAAAAAAAAzhhE9TLGwPhdYrDvAxta+iIfJuzIURz0AAAAAAAAAADMXGrxP8FC8rR62O5KqfjyG1Ls9AuhQvQAAgD8AAIA/TRQPPcQypz35kMa9R72Rvglpgr1zXHm9AAAAAAAAAADNcjm8zmSgPlyClL2qMg+/LNuCvLG7KL0AAAAAAAAAALNxSz3cnU09QoImvsfspr7ASBu+WnQ/PAAAAAAAAAAAM294Pr0XYT/iqh09wZkCv0+hzD51XGe9AAAAAAAAAADa0J49mWM+Pn6afL6tXKW+XI0yvi6+ob0AAAAAAAAAAFplzr350LE/EmjXvnRmob4ag0i+gVzFvgAAAAAAAAAAADtKvStDez/Trzq+Zr4tv+A6z729alC9AAAAAAAAAABmBTy9qY9wvP3kdj4tSei94i9mvXOxaj0AAIA/AACAP2YNvL2h6Yo/jWgBvmSPHr+TnIG+Ds2SvAAAAAAAAAAAAOjfPNLsiT6i1R2/C5PSvu9yxr3KEta+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgQhx5WyrbkCUhpRSlIwBbJRL5YwBdJRHQLiWkMMqjJx1fZQoaAZoCWgPQwhhbvdyH4NwQJSGlFKUaBVL62gWR0C4lt0EgW8AdX2UKGgGaAloD0MIiQlq+NakcUCUhpRSlGgVS7doFkdAuJbpKCg9NnV9lChoBmgJaA9DCOpcUUqIgHJAlIaUUpRoFUvTaBZHQLiW6j/dZaF1fZQoaAZoCWgPQwi932jHDbxxQJSGlFKUaBVL8WgWR0C4lvj6eoUBdX2UKGgGaAloD0MIqbwd4fRtc0CUhpRSlGgVS9VoFkdAuJb771qWT3V9lChoBmgJaA9DCNOE7SejpXFAlIaUUpRoFUu+aBZHQLiW/BUrCnB1fZQoaAZoCWgPQwgShCugEFlyQJSGlFKUaBVL6mgWR0C4lw3ARChOdX2UKGgGaAloD0MIofSFkLOyc0CUhpRSlGgVS75oFkdAuJcW+pOvdXV9lChoBmgJaA9DCCTRyyjWBHBAlIaUUpRoFUvPaBZHQLiXGG5c1O11fZQoaAZoCWgPQwjPoQxVMdUXwJSGlFKUaBVLY2gWR0C4lyAeJYT1dX2UKGgGaAloD0MIgXozaj6GcUCUhpRSlGgVS+hoFkdAuJczbh3qzXV9lChoBmgJaA9DCLn+XZ/5zHJAlIaUUpRoFUvEaBZHQLiXNi7Ciyp1fZQoaAZoCWgPQwgs8uuHGAJwQJSGlFKUaBVL4mgWR0C4l1mFvhqCdX2UKGgGaAloD0MI56ij4yovcUCUhpRSlGgVS79oFkdAuJdjBfrrxHV9lChoBmgJaA9DCJ/MP/rmtnBAlIaUUpRoFUvgaBZHQLiXhySFGod1fZQoaAZoCWgPQwg+B5YjJEZ0QJSGlFKUaBVL3mgWR0C4l5YxxkupdX2UKGgGaAloD0MIuHU3T/VmckCUhpRSlGgVS+VoFkdAuJeqhAWznnV9lChoBmgJaA9DCHPaU3JO0HBAlIaUUpRoFUvhaBZHQLiXuH2h7E51fZQoaAZoCWgPQwjvxRftMXxyQJSGlFKUaBVL7GgWR0C4l7qyjYZmdX2UKGgGaAloD0MIvDydK0rFcECUhpRSlGgVS8RoFkdAuJe88+zMR3V9lChoBmgJaA9DCKJGIcks73FAlIaUUpRoFUvLaBZHQLiX1aMrEtN1fZQoaAZoCWgPQwhJSKRtfBdyQJSGlFKUaBVL0WgWR0C4l+XWBjFydX2UKGgGaAloD0MIxsN7DiwzNUCUhpRSlGgVS21oFkdAuJfoRSP2f3V9lChoBmgJaA9DCFd4l4v4+3JAlIaUUpRoFUvBaBZHQLiYCMb3oLZ1fZQoaAZoCWgPQwhR3Vz87f9xQJSGlFKUaBVL5WgWR0C4mBJ4bCJodX2UKGgGaAloD0MIck7soT2Mc0CUhpRSlGgVS7toFkdAuJgnBLwnY3V9lChoBmgJaA9DCN9rCI7L729AlIaUUpRoFUvZaBZHQLiYKEJSiud1fZQoaAZoCWgPQwj1vYbguLNzQJSGlFKUaBVL6WgWR0C4mErs0HhTdX2UKGgGaAloD0MIAS8zbJQ+ckCUhpRSlGgVS95oFkdAuJhTEn9ehXV9lChoBmgJaA9DCFG8ytqmr3NAlIaUUpRoFUvlaBZHQLiYcCFsYVJ1fZQoaAZoCWgPQwjr/xzmy2xzQJSGlFKUaBVL+WgWR0C4mHSn1nM/dX2UKGgGaAloD0MI1ldXBSo5c0CUhpRSlGgVS7NoFkdAuJh2peeFtnV9lChoBmgJaA9DCMXFUbmJoERAlIaUUpRoFUt/aBZHQLiYeb5/LDB1fZQoaAZoCWgPQwgjh4ibU+dxQJSGlFKUaBVNAgFoFkdAuJijAbhm5HV9lChoBmgJaA9DCL2rHjDPhHFAlIaUUpRoFUv7aBZHQLiYr+SbH6x1fZQoaAZoCWgPQwhFaAQbF89yQJSGlFKUaBVL0mgWR0C4mLqJEYwZdX2UKGgGaAloD0MIfH4YITx+OUCUhpRSlGgVS4NoFkdAuJi9UEPlMnV9lChoBmgJaA9DCN5aJsMx7HFAlIaUUpRoFUvYaBZHQLiY2+xW1dB1fZQoaAZoCWgPQwgcXhCRmp5xQJSGlFKUaBVL3GgWR0C4mOJtm+TNdX2UKGgGaAloD0MI4h5LHzoVckCUhpRSlGgVS+poFkdAuJjm+AVfu3V9lChoBmgJaA9DCFrVko5ys3JAlIaUUpRoFUvMaBZHQLiY6MXrMTx1fZQoaAZoCWgPQwgr3sg8cuFwQJSGlFKUaBVL5GgWR0C4mRVVPva2dX2UKGgGaAloD0MIp0BmZxFgcUCUhpRSlGgVS/BoFkdAuJkmp4rz5HV9lChoBmgJaA9DCPhvXpx4d3FAlIaUUpRoFUvfaBZHQLiZKutwJgN1fZQoaAZoCWgPQwjScTWyKwRwQJSGlFKUaBVL62gWR0C4mUeloDgZdX2UKGgGaAloD0MIjWMke4RGQkCUhpRSlGgVS4VoFkdAuJlYYzi0fHV9lChoBmgJaA9DCPxyZrtCHUtAlIaUUpRoFUtnaBZHQLiZYyoXKr91fZQoaAZoCWgPQwgdyeU/ZLJzQJSGlFKUaBVNCgFoFkdAuJls+6iCa3V9lChoBmgJaA9DCBQi4BCqDkZAlIaUUpRoFUuPaBZHQLiZcWDHwPR1fZQoaAZoCWgPQwjA7J48rBhzQJSGlFKUaBVLxWgWR0C4mXoyTINmdX2UKGgGaAloD0MI+weRDLkucUCUhpRSlGgVS+RoFkdAuJmMldC3PXV9lChoBmgJaA9DCNyg9ls7u0hAlIaUUpRoFUuBaBZHQLiZmmLLpzN1fZQoaAZoCWgPQwh15bM8T/5yQJSGlFKUaBVL02gWR0C4mZpxm03PdX2UKGgGaAloD0MI4pANpMshckCUhpRSlGgVTQUBaBZHQLiZsD5j6N51fZQoaAZoCWgPQwhJvhJICfFxQJSGlFKUaBVL3WgWR0C4mci5I6KcdX2UKGgGaAloD0MIXiuhuyRcRECUhpRSlGgVS3doFkdAuJnJz5oGp3V9lChoBmgJaA9DCAJlU67wA1BAlIaUUpRoFUuIaBZHQLiZ4rSE12t1fZQoaAZoCWgPQwg0EwznWnVxQJSGlFKUaBVL4mgWR0C4meUHt4RmdX2UKGgGaAloD0MIKZZbWg1FbkCUhpRSlGgVS89oFkdAuJnoeuFHrnV9lChoBmgJaA9DCGO0jqpmd3BAlIaUUpRoFUv5aBZHQLiZ6jC53C91fZQoaAZoCWgPQwj/XgoPmk9wQJSGlFKUaBVLumgWR0C4mfd2LYPHdX2UKGgGaAloD0MI9bhvtY53cUCUhpRSlGgVS91oFkdAuJn8v114gXV9lChoBmgJaA9DCL8prFSQpHBAlIaUUpRoFUu2aBZHQLiaB64Ds+p1fZQoaAZoCWgPQwhhcTjz6yVzQJSGlFKUaBVL8WgWR0C4mgaX8fmtdX2UKGgGaAloD0MIbqZCPFKgcECUhpRSlGgVS+hoFkdAuJpRBTn7pHV9lChoBmgJaA9DCCXpmsk3i3JAlIaUUpRoFUuxaBZHQLiabgtvn8t1fZQoaAZoCWgPQwhClC9ooSJyQJSGlFKUaBVLzmgWR0C4mm5TdcjadX2UKGgGaAloD0MIHaopyTrsJ0CUhpRSlGgVS1NoFkdAuJp/8Nx2jnV9lChoBmgJaA9DCI4hADi27HFAlIaUUpRoFUv7aBZHQLiap5vcafl1fZQoaAZoCWgPQwjDKt7IPBpyQJSGlFKUaBVL7mgWR0C4mtOtOmBOdX2UKGgGaAloD0MImx2pvjOackCUhpRSlGgVS+FoFkdAuJrjsmfGuXV9lChoBmgJaA9DCGXequuQ9nFAlIaUUpRoFUvHaBZHQLia6wV0tAd1fZQoaAZoCWgPQwi8PnPW50pzQJSGlFKUaBVL02gWR0C4mwM2NvOydX2UKGgGaAloD0MIIhgHl86dcECUhpRSlGgVS/RoFkdAuJsMAksz23V9lChoBmgJaA9DCNaO4hx1UERAlIaUUpRoFUuKaBZHQLibJhR64Uh1fZQoaAZoCWgPQwifckwW97tyQJSGlFKUaBVLyWgWR0C4mz1NcnmadX2UKGgGaAloD0MIgBE0ZtKvckCUhpRSlGgVS7hoFkdAuJtDGHYYi3V9lChoBmgJaA9DCAfRWtHmiCvAlIaUUpRoFUtWaBZHQLibUxvegth1fZQoaAZoCWgPQwi9x5kmbB10QJSGlFKUaBVNnwFoFkdAuJtkTURWcXV9lChoBmgJaA9DCB3pDIw8B3FAlIaUUpRoFUvjaBZHQLibaADaGpN1fZQoaAZoCWgPQwg3xeOiGrVzQJSGlFKUaBVLymgWR0C4m3ZVwPy1dX2UKGgGaAloD0MIc0f/y/WpcUCUhpRSlGgVS+BoFkdAuJt5lBhQWXV9lChoBmgJaA9DCP8fJ0wYW05AlIaUUpRoFUt7aBZHQLibhdu5z5p1fZQoaAZoCWgPQwiBI4EGm1ZyQJSGlFKUaBVL6mgWR0C4m4ltfoicdX2UKGgGaAloD0MIP28qUqFtcUCUhpRSlGgVTREBaBZHQLibkzPKMeh1fZQoaAZoCWgPQwgMkGgCRXQ7QJSGlFKUaBVLdmgWR0C4m5evZAY6dX2UKGgGaAloD0MImIbhI+LWcUCUhpRSlGgVS/5oFkdAuJubfqHGj3V9lChoBmgJaA9DCB2Txf1HmnNAlIaUUpRoFUvAaBZHQLibrTmW+oN1fZQoaAZoCWgPQwh65A8GHk1wQJSGlFKUaBVL2WgWR0C4m7Jl4C6pdX2UKGgGaAloD0MIcqPIWoOzckCUhpRSlGgVS7VoFkdAuJu7Nt65XnV9lChoBmgJaA9DCN4gWivaHHJAlIaUUpRoFUu8aBZHQLibvsUIsy11fZQoaAZoCWgPQwhe9YB5CPFyQJSGlFKUaBVL9mgWR0C4m8w75mAcdX2UKGgGaAloD0MI2IFzRpQucECUhpRSlGgVS9FoFkdAuJvT557gKnV9lChoBmgJaA9DCKUTCaZa53BAlIaUUpRoFUvzaBZHQLicA2aDwph1fZQoaAZoCWgPQwiT36KTpVZxQJSGlFKUaBVL42gWR0C4nB6WkadddX2UKGgGaAloD0MIu0ihLHxmcUCUhpRSlGgVS/BoFkdAuJwsBuGbkXV9lChoBmgJaA9DCOBkG7jDL3NAlIaUUpRoFU1wAWgWR0C4nDAuh9LIdX2UKGgGaAloD0MIVDntKXnrcECUhpRSlGgVS/loFkdAuJwzBLwnY3V9lChoBmgJaA9DCBKfO8H+sU9AlIaUUpRoFUtjaBZHQLicVg1FYuF1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 310,
79
+ "n_steps": 1024,
80
  "gamma": 0.9999,
81
  "gae_lambda": 0.98,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
+ "batch_size": 8,
86
+ "n_epochs": 5,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c7ae059992a03f901cface1e7307713a5863b0c5aab474a0cf4f6b4823eb62ce
3
  size 84893
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5216c39b3db845cdd4847d71c34fafc852b46030cbdcb153f6f8f5aa211b613e
3
  size 84893
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b9707f8410baeebf56105d987f266ce373ce5d8b31f5b4e743e020ae6cd18917
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4677119dff6706cbf2b1beef80d9f3ebd082f26ab52525641f9f709aeaac4c2b
3
  size 43201
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d66b77c2991b0e7705e40cba1cdea35fc50bb3fefcd6ae3bbfb39e54e2f30404
3
- size 233850
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6445c8283a7108a46fff6e3c43af95fad30feee88d652e222c37e25b83f081a
3
+ size 204733
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 232.93300233584463, "std_reward": 65.27163955835485, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T15:53:22.121230"}
 
1
+ {"mean_reward": 288.5355320611919, "std_reward": 20.644327320596936, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T15:39:43.806700"}