Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 2174.06 +/- 131.40
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03b63cb6097ff94ab0b5d6b4f4d2af1570bff849b13db1ef4efa447de7b00334
|
3 |
+
size 129248
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f352c1bf6d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f352c1bf760>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f352c1bf7f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f352c1bf880>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f352c1bf910>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f352c1bf9a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f352c1bfa30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f352c1bfac0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f352c1bfb50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f352c1bfbe0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f352c1bfc70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f352c1bfd00>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f352c1baf00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1687265665800916290,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACcyzb1sP5k+4bHsPtC5MT/1YlG/zcHFP8m5tT6OXq2+p4knPz5xnL8IbBU/eoedPqzHu77stVLA9EcJPvyoOr8QMs++g7H+v/jcVj9GC6i7kuRvvkidxb9bTGe+t1dDvbvMdj9YFdG/W2wDPyyKg78BIEc/b8CsPglL5T4cmD4/bHmZvzqPDz9VPJ89eAV5v8dsJz9lhY6/impmP83myr9JzHa/u9VUP5PiGb/4TxE/sLnUvrq9Ij/jhzA/n1xNv02fK74wtVw/wzKrvndZfj+JxYS/4LgcP1tsAz8sioO/hW5UPgEQsb4aGgg/B85xPxLQzj7RzYa+oys2v03pSz6bTpY+m64jvjBaBb+sg7M+0ZqAPisFiT9WBz4+zlKMP3o28z6/GgNAA6RKv2Z7sb/nHYK+cJ+IvynkRz/wSIA+icWEv+C4HD/xVPm/bRx5PzQTND92npS+7dkJP8AS/b6n7Ia+hbSBv33zRz8STRC/uNEwPxRSoL5ckuk/WguTvx9Dy77Xb4Q/CHKMv8oQ6j5ZvlM/B9fOP/TV8z7FuU2+F815PnvtOj8DPoU+qW36P7vMdj/guBw/W2wDPyyKg7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB0co02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZJSfuwAAAAAETeS/AAAAAGD3YTwAAAAACh8AQAAAAAByW7A9AAAAAB7c6z8AAAAAwHijvQAAAAD0u/i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXPM7NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPKxwTsAAAAAAKv3vwAAAACkjAK9AAAAAJAe4j8AAAAAfrvSPQAAAACCUwFAAAAAAGiNe70AAAAAlDrlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPG8FrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICo2Js8AAAAALCd8L8AAAAAc2IOvgAAAACIZ/4/AAAAAO7uNjoAAAAAO8PwPwAAAABaB169AAAAAAC6+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJMZe1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAf9EQvgAAAAAPO+u/AAAAANZYr70AAAAA+8XwPwAAAABpoqO9AAAAAJuN9z8AAAAAoZj5PAAAAAB2VPa/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKBku+W4Vh2MAWyUTegDjAF0lEdAqeNxWYF7lnV9lChoBkdAm0UJbpu/DmgHTegDaAhHQKnrva/yoXN1fZQoaAZHQJ+dsO09hZ1oB03oA2gIR0Cp7LlJQLuydX2UKGgGR0Cb5PTVlPJraAdN6ANoCEdAqe6XFDOTq3V9lChoBkdAnSiJ6Y3Ns2gHTegDaAhHQKnwk8scyWR1fZQoaAZHQKBNIQyRB/toB03oA2gIR0Cp+9MLv1DjdX2UKGgGR0CfEiied07saAdN6ANoCEdAqfzWqFRHgHV9lChoBkdAmgmtg8bJfmgHTegDaAhHQKn+aVSGahJ1fZQoaAZHQJ3fCbSZ0CBoB03oA2gIR0Cp/8JmmLtNdX2UKGgGR0CaGQ2a2F37aAdN6ANoCEdAqggrIaLn93V9lChoBkdAmgL3MEA5rGgHTegDaAhHQKoJKsOoYN11fZQoaAZHQJtqYdXDFZRoB03oA2gIR0CqCr04R28qdX2UKGgGR0CbUkNyYG+saAdN6ANoCEdAqgwa66J66nV9lChoBkdAnPuykCV8kWgHTegDaAhHQKoYZ0jC53F1fZQoaAZHQJyX/nr6ciJoB03oA2gIR0CqGV6QV9F4dX2UKGgGR0CbSPTRIBikaAdN6ANoCEdAqhrrFOwgT3V9lChoBkdAnmPPH1e0HGgHTegDaAhHQKocQy+HrQh1fZQoaAZHQJ9Rbs/pt79oB03oA2gIR0CqJIjG96C2dX2UKGgGR0CW4sGjsUqQaAdN6ANoCEdAqiWNOXVslHV9lChoBkdAn2QU8NhE0GgHTegDaAhHQKonH4QBgeB1fZQoaAZHQJ4lgF8ohIRoB03oA2gIR0CqKIEJSiuddX2UKGgGR0CdtAj0L+glaAdN6ANoCEdAqjNDTjNpunV9lChoBkdAmxB+o5xR22gHTegDaAhHQKo02qMFUyZ1fZQoaAZHQJ4i1l6JIlNoB03oA2gIR0CqN0IBBAv+dX2UKGgGR0CcI6vRqoIfaAdN6ANoCEdAqjihP0qYq3V9lChoBkdAmnvbHAAQx2gHTegDaAhHQKpBCDcM3Id1fZQoaAZHQJp0nYWcjJNoB03oA2gIR0CqQhTG5tm+dX2UKGgGR0CYpL/NJOFhaAdN6ANoCEdAqkOv6XSjQHV9lChoBkdAmUyxwl0HQmgHTegDaAhHQKpFEjrRjSZ1fZQoaAZHQJnOMu3+dbxoB03oA2gIR0CqTo9Vea8ZdX2UKGgGR0CQXKZaV2RraAdN6ANoCEdAqlAZvDP4VXV9lChoBkdAla/AQUYbbWgHTegDaAhHQKpSj6F/QSl1fZQoaAZHQJWMUjB2wFFoB03oA2gIR0CqVKnZCfHxdX2UKGgGR0CZWrDHwPRRaAdN6ANoCEdAql2eN3np0XV9lChoBkdAlxry44Ia+GgHTegDaAhHQKpeqeqaPS51fZQoaAZHQJeVtoK2KEZoB03oA2gIR0CqYDLV4HHFdX2UKGgGR0CX3QIj4YaYaAdN6ANoCEdAqmGOMKkVOHV9lChoBkdAnR+NwvQF92gHTegDaAhHQKppv4hUzbh1fZQoaAZHQJaCa8VYZEVoB03oA2gIR0CqaxIgvDgqdX2UKGgGR0CZt8eI2wV1aAdN6ANoCEdAqm1eJJoTPHV9lChoBkdAk+FLJfYzzmgHTegDaAhHQKpvXUuL7411fZQoaAZHQJ0BIwsXizdoB03oA2gIR0CqebSJj2BbdX2UKGgGR0CeswoMa0hNaAdN6ANoCEdAqnqySRr8BXV9lChoBkdAn2S/U4JeFGgHTegDaAhHQKp8PGFzuF91fZQoaAZHQJvbaEWZZ0VoB03oA2gIR0CqfZC9ytFKdX2UKGgGR0CcpOYekpI+aAdN6ANoCEdAqoW5QxesxXV9lChoBkdAoE6aziS7oWgHTegDaAhHQKqGuRSP2f11fZQoaAZHQJymf3M6ikBoB03oA2gIR0CqiES/KyOadX2UKGgGR0CfH0UJfICEaAdN6ANoCEdAqonl8stkF3V9lChoBkdAn+72kWRA8mgHTegDaAhHQKqVrASFoL51fZQoaAZHQJ9s9V3ljmVoB03oA2gIR0Cqlq+1SflIdX2UKGgGR0CVw0Cih37laAdN6ANoCEdAqphHaxoqTnV9lChoBkdAmTG9wFTvRmgHTegDaAhHQKqZqF7laKV1fZQoaAZHQJ/8+v2Xb/RoB03oA2gIR0Cqoe7qQiiZdX2UKGgGR0CfpNkXUH6eaAdN6ANoCEdAqqLsf5k9U3V9lChoBkdAnwqh59mYjWgHTegDaAhHQKqkfII4VAR1fZQoaAZHQJS+aJzkp7VoB03oA2gIR0CqpdSR8twrdX2UKGgGR0ChACygGr0baAdN6ANoCEdAqrEI2dd3S3V9lChoBkdAoJLUngHeJ2gHTegDaAhHQKqymg5imVJ1fZQoaAZHQKEyl9jPOY9oB03oA2gIR0CqtFq4hEBsdX2UKGgGR0Cb3fGVRk3CaAdN6ANoCEdAqrWzzXjEN3V9lChoBkdAnxTyRGMGYGgHTegDaAhHQKq9/RqoIfN1fZQoaAZHQJ76x+Zw4sFoB03oA2gIR0Cqvvu9eyAydX2UKGgGR0CUstOuq3mWaAdN6ANoCEdAqsCRxcVxj3V9lChoBkdAn2PS/CZWrGgHTegDaAhHQKrB9G6wt8N1fZQoaAZHQJtvev4dp7FoB03oA2gIR0Cqy4bONYKZdX2UKGgGR0CgCho7FKkEaAdN6ANoCEdAqs0iV0Lc9HV9lChoBkdAnIuBGUfPomgHTegDaAhHQKrPjd4Vym11fZQoaAZHQKAtg4I8hcJoB03oA2gIR0Cq0awXyiEhdX2UKGgGR0Cf+3nqmj0uaAdN6ANoCEdAqtolyYG+snV9lChoBkdAm69NjG1hLGgHTegDaAhHQKrbKyJsO5J1fZQoaAZHQJ7X63kPtlZoB03oA2gIR0Cq3L287IT5dX2UKGgGR0CedmT7EYO2aAdN6ANoCEdAqt4JqIrOJXV9lChoBkdAoLNFstTUAmgHTegDaAhHQKrmTUZvUBp1fZQoaAZHQJ5VBKVY6n1oB03oA2gIR0Cq58Yg7o0RdX2UKGgGR0CgSKJpWV/uaAdN6ANoCEdAqun3bfxc3XV9lChoBkdAnbmKsEJSi2gHTegDaAhHQKrsBbwBo251fZQoaAZHQJ201/y5I6NoB03oA2gIR0Cq9jcNH6MzdX2UKGgGR0CgPKJDVpbmaAdN6ANoCEdAqvc1U+9rXXV9lChoBkdAoPLO+sYEXGgHTegDaAhHQKr4zVNHpbF1fZQoaAZHQJysM+iaiK1oB03oA2gIR0Cq+ii1Z1V6dX2UKGgGR0ChDRTYmLLqaAdN6ANoCEdAqwKPWQOnVHV9lChoBkdAoFR82WIGhWgHTegDaAhHQKsDlBYV6/t1fZQoaAZHQJ9vZSvTw2FoB03oA2gIR0CrBR2AXl8xdX2UKGgGR0CgqP9P1tfpaAdN6ANoCEdAqwcPVCojwHV9lChoBkdAnSPAR5C4SmgHTegDaAhHQKsSkaQV9F51fZQoaAZHQJse+Oearm1oB03oA2gIR0CrE5f/FR51dX2UKGgGR0CiA49IXj2jaAdN6ANoCEdAqxUnUWl/IHV9lChoBkdAoaPDjHXEqGgHTegDaAhHQKsWhv0AcT91fZQoaAZHQKAHoYSg5BFoB03oA2gIR0CrHvaRQrMDdX2UKGgGR0CgJuojnmq6aAdN6ANoCEdAqx//2RJVbXV9lChoBkdAn/+KYVqN62gHTegDaAhHQKshl6KtPpJ1fZQoaAZHQKANDBhQWN5oB03oA2gIR0CrIvF10T11dX2UKGgGR0Cf4/gTAWSEaAdN6ANoCEdAqy7nrleWwHV9lChoBkdAn3broGIKt2gHTegDaAhHQKswCMDOkcl1fZQoaAZHQKDkaTbFjutoB03oA2gIR0CrMay88La3dX2UKGgGR0Cga8jvVmSRaAdN6ANoCEdAqzMLErGzbHV9lChoBkdAl0QVqveP72gHTegDaAhHQKs7SJ1JUYN1fZQoaAZHQKAAVirksBhoB03oA2gIR0CrPEbVjI7vdX2UKGgGR0ChUX+XRgJDaAdN6ANoCEdAqz3aoCMglnVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:caa5af664fd37f1c6f5fa496d194516f05d0d83e17e14dbaf19d75045b2c51e6
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:387710f5e3b48dacf1221721878ab69d19ea837103da061344545ac8da9b073d
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f352c1bf6d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f352c1bf760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f352c1bf7f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f352c1bf880>", "_build": "<function ActorCriticPolicy._build at 0x7f352c1bf910>", "forward": "<function ActorCriticPolicy.forward at 0x7f352c1bf9a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f352c1bfa30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f352c1bfac0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f352c1bfb50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f352c1bfbe0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f352c1bfc70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f352c1bfd00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f352c1baf00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687265665800916290, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACcyzb1sP5k+4bHsPtC5MT/1YlG/zcHFP8m5tT6OXq2+p4knPz5xnL8IbBU/eoedPqzHu77stVLA9EcJPvyoOr8QMs++g7H+v/jcVj9GC6i7kuRvvkidxb9bTGe+t1dDvbvMdj9YFdG/W2wDPyyKg78BIEc/b8CsPglL5T4cmD4/bHmZvzqPDz9VPJ89eAV5v8dsJz9lhY6/impmP83myr9JzHa/u9VUP5PiGb/4TxE/sLnUvrq9Ij/jhzA/n1xNv02fK74wtVw/wzKrvndZfj+JxYS/4LgcP1tsAz8sioO/hW5UPgEQsb4aGgg/B85xPxLQzj7RzYa+oys2v03pSz6bTpY+m64jvjBaBb+sg7M+0ZqAPisFiT9WBz4+zlKMP3o28z6/GgNAA6RKv2Z7sb/nHYK+cJ+IvynkRz/wSIA+icWEv+C4HD/xVPm/bRx5PzQTND92npS+7dkJP8AS/b6n7Ia+hbSBv33zRz8STRC/uNEwPxRSoL5ckuk/WguTvx9Dy77Xb4Q/CHKMv8oQ6j5ZvlM/B9fOP/TV8z7FuU2+F815PnvtOj8DPoU+qW36P7vMdj/guBw/W2wDPyyKg7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB0co02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZJSfuwAAAAAETeS/AAAAAGD3YTwAAAAACh8AQAAAAAByW7A9AAAAAB7c6z8AAAAAwHijvQAAAAD0u/i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXPM7NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPKxwTsAAAAAAKv3vwAAAACkjAK9AAAAAJAe4j8AAAAAfrvSPQAAAACCUwFAAAAAAGiNe70AAAAAlDrlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPG8FrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICo2Js8AAAAALCd8L8AAAAAc2IOvgAAAACIZ/4/AAAAAO7uNjoAAAAAO8PwPwAAAABaB169AAAAAAC6+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJMZe1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAf9EQvgAAAAAPO+u/AAAAANZYr70AAAAA+8XwPwAAAABpoqO9AAAAAJuN9z8AAAAAoZj5PAAAAAB2VPa/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKBku+W4Vh2MAWyUTegDjAF0lEdAqeNxWYF7lnV9lChoBkdAm0UJbpu/DmgHTegDaAhHQKnrva/yoXN1fZQoaAZHQJ+dsO09hZ1oB03oA2gIR0Cp7LlJQLuydX2UKGgGR0Cb5PTVlPJraAdN6ANoCEdAqe6XFDOTq3V9lChoBkdAnSiJ6Y3Ns2gHTegDaAhHQKnwk8scyWR1fZQoaAZHQKBNIQyRB/toB03oA2gIR0Cp+9MLv1DjdX2UKGgGR0CfEiied07saAdN6ANoCEdAqfzWqFRHgHV9lChoBkdAmgmtg8bJfmgHTegDaAhHQKn+aVSGahJ1fZQoaAZHQJ3fCbSZ0CBoB03oA2gIR0Cp/8JmmLtNdX2UKGgGR0CaGQ2a2F37aAdN6ANoCEdAqggrIaLn93V9lChoBkdAmgL3MEA5rGgHTegDaAhHQKoJKsOoYN11fZQoaAZHQJtqYdXDFZRoB03oA2gIR0CqCr04R28qdX2UKGgGR0CbUkNyYG+saAdN6ANoCEdAqgwa66J66nV9lChoBkdAnPuykCV8kWgHTegDaAhHQKoYZ0jC53F1fZQoaAZHQJyX/nr6ciJoB03oA2gIR0CqGV6QV9F4dX2UKGgGR0CbSPTRIBikaAdN6ANoCEdAqhrrFOwgT3V9lChoBkdAnmPPH1e0HGgHTegDaAhHQKocQy+HrQh1fZQoaAZHQJ9Rbs/pt79oB03oA2gIR0CqJIjG96C2dX2UKGgGR0CW4sGjsUqQaAdN6ANoCEdAqiWNOXVslHV9lChoBkdAn2QU8NhE0GgHTegDaAhHQKonH4QBgeB1fZQoaAZHQJ4lgF8ohIRoB03oA2gIR0CqKIEJSiuddX2UKGgGR0CdtAj0L+glaAdN6ANoCEdAqjNDTjNpunV9lChoBkdAmxB+o5xR22gHTegDaAhHQKo02qMFUyZ1fZQoaAZHQJ4i1l6JIlNoB03oA2gIR0CqN0IBBAv+dX2UKGgGR0CcI6vRqoIfaAdN6ANoCEdAqjihP0qYq3V9lChoBkdAmnvbHAAQx2gHTegDaAhHQKpBCDcM3Id1fZQoaAZHQJp0nYWcjJNoB03oA2gIR0CqQhTG5tm+dX2UKGgGR0CYpL/NJOFhaAdN6ANoCEdAqkOv6XSjQHV9lChoBkdAmUyxwl0HQmgHTegDaAhHQKpFEjrRjSZ1fZQoaAZHQJnOMu3+dbxoB03oA2gIR0CqTo9Vea8ZdX2UKGgGR0CQXKZaV2RraAdN6ANoCEdAqlAZvDP4VXV9lChoBkdAla/AQUYbbWgHTegDaAhHQKpSj6F/QSl1fZQoaAZHQJWMUjB2wFFoB03oA2gIR0CqVKnZCfHxdX2UKGgGR0CZWrDHwPRRaAdN6ANoCEdAql2eN3np0XV9lChoBkdAlxry44Ia+GgHTegDaAhHQKpeqeqaPS51fZQoaAZHQJeVtoK2KEZoB03oA2gIR0CqYDLV4HHFdX2UKGgGR0CX3QIj4YaYaAdN6ANoCEdAqmGOMKkVOHV9lChoBkdAnR+NwvQF92gHTegDaAhHQKppv4hUzbh1fZQoaAZHQJaCa8VYZEVoB03oA2gIR0CqaxIgvDgqdX2UKGgGR0CZt8eI2wV1aAdN6ANoCEdAqm1eJJoTPHV9lChoBkdAk+FLJfYzzmgHTegDaAhHQKpvXUuL7411fZQoaAZHQJ0BIwsXizdoB03oA2gIR0CqebSJj2BbdX2UKGgGR0CeswoMa0hNaAdN6ANoCEdAqnqySRr8BXV9lChoBkdAn2S/U4JeFGgHTegDaAhHQKp8PGFzuF91fZQoaAZHQJvbaEWZZ0VoB03oA2gIR0CqfZC9ytFKdX2UKGgGR0CcpOYekpI+aAdN6ANoCEdAqoW5QxesxXV9lChoBkdAoE6aziS7oWgHTegDaAhHQKqGuRSP2f11fZQoaAZHQJymf3M6ikBoB03oA2gIR0CqiES/KyOadX2UKGgGR0CfH0UJfICEaAdN6ANoCEdAqonl8stkF3V9lChoBkdAn+72kWRA8mgHTegDaAhHQKqVrASFoL51fZQoaAZHQJ9s9V3ljmVoB03oA2gIR0Cqlq+1SflIdX2UKGgGR0CVw0Cih37laAdN6ANoCEdAqphHaxoqTnV9lChoBkdAmTG9wFTvRmgHTegDaAhHQKqZqF7laKV1fZQoaAZHQJ/8+v2Xb/RoB03oA2gIR0Cqoe7qQiiZdX2UKGgGR0CfpNkXUH6eaAdN6ANoCEdAqqLsf5k9U3V9lChoBkdAnwqh59mYjWgHTegDaAhHQKqkfII4VAR1fZQoaAZHQJS+aJzkp7VoB03oA2gIR0CqpdSR8twrdX2UKGgGR0ChACygGr0baAdN6ANoCEdAqrEI2dd3S3V9lChoBkdAoJLUngHeJ2gHTegDaAhHQKqymg5imVJ1fZQoaAZHQKEyl9jPOY9oB03oA2gIR0CqtFq4hEBsdX2UKGgGR0Cb3fGVRk3CaAdN6ANoCEdAqrWzzXjEN3V9lChoBkdAnxTyRGMGYGgHTegDaAhHQKq9/RqoIfN1fZQoaAZHQJ76x+Zw4sFoB03oA2gIR0Cqvvu9eyAydX2UKGgGR0CUstOuq3mWaAdN6ANoCEdAqsCRxcVxj3V9lChoBkdAn2PS/CZWrGgHTegDaAhHQKrB9G6wt8N1fZQoaAZHQJtvev4dp7FoB03oA2gIR0Cqy4bONYKZdX2UKGgGR0CgCho7FKkEaAdN6ANoCEdAqs0iV0Lc9HV9lChoBkdAnIuBGUfPomgHTegDaAhHQKrPjd4Vym11fZQoaAZHQKAtg4I8hcJoB03oA2gIR0Cq0awXyiEhdX2UKGgGR0Cf+3nqmj0uaAdN6ANoCEdAqtolyYG+snV9lChoBkdAm69NjG1hLGgHTegDaAhHQKrbKyJsO5J1fZQoaAZHQJ7X63kPtlZoB03oA2gIR0Cq3L287IT5dX2UKGgGR0CedmT7EYO2aAdN6ANoCEdAqt4JqIrOJXV9lChoBkdAoLNFstTUAmgHTegDaAhHQKrmTUZvUBp1fZQoaAZHQJ5VBKVY6n1oB03oA2gIR0Cq58Yg7o0RdX2UKGgGR0CgSKJpWV/uaAdN6ANoCEdAqun3bfxc3XV9lChoBkdAnbmKsEJSi2gHTegDaAhHQKrsBbwBo251fZQoaAZHQJ201/y5I6NoB03oA2gIR0Cq9jcNH6MzdX2UKGgGR0CgPKJDVpbmaAdN6ANoCEdAqvc1U+9rXXV9lChoBkdAoPLO+sYEXGgHTegDaAhHQKr4zVNHpbF1fZQoaAZHQJysM+iaiK1oB03oA2gIR0Cq+ii1Z1V6dX2UKGgGR0ChDRTYmLLqaAdN6ANoCEdAqwKPWQOnVHV9lChoBkdAoFR82WIGhWgHTegDaAhHQKsDlBYV6/t1fZQoaAZHQJ9vZSvTw2FoB03oA2gIR0CrBR2AXl8xdX2UKGgGR0CgqP9P1tfpaAdN6ANoCEdAqwcPVCojwHV9lChoBkdAnSPAR5C4SmgHTegDaAhHQKsSkaQV9F51fZQoaAZHQJse+Oearm1oB03oA2gIR0CrE5f/FR51dX2UKGgGR0CiA49IXj2jaAdN6ANoCEdAqxUnUWl/IHV9lChoBkdAoaPDjHXEqGgHTegDaAhHQKsWhv0AcT91fZQoaAZHQKAHoYSg5BFoB03oA2gIR0CrHvaRQrMDdX2UKGgGR0CgJuojnmq6aAdN6ANoCEdAqx//2RJVbXV9lChoBkdAn/+KYVqN62gHTegDaAhHQKshl6KtPpJ1fZQoaAZHQKANDBhQWN5oB03oA2gIR0CrIvF10T11dX2UKGgGR0Cf4/gTAWSEaAdN6ANoCEdAqy7nrleWwHV9lChoBkdAn3broGIKt2gHTegDaAhHQKswCMDOkcl1fZQoaAZHQKDkaTbFjutoB03oA2gIR0CrMay88La3dX2UKGgGR0Cga8jvVmSRaAdN6ANoCEdAqzMLErGzbHV9lChoBkdAl0QVqveP72gHTegDaAhHQKs7SJ1JUYN1fZQoaAZHQKAAVirksBhoB03oA2gIR0CrPEbVjI7vdX2UKGgGR0ChUX+XRgJDaAdN6ANoCEdAqz3aoCMglnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:496d0bc2d4b70ecc4aec78fd5e306427383eb15e2a7b35631fc6bd14a1f24063
|
3 |
+
size 1073505
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2174.0581614291996, "std_reward": 131.40471954879902, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-20T13:55:42.186349"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4549247bfcb69d2fd5c8fac58221592e0d5980287159c663afbdcb8ee1fb0b82
|
3 |
+
size 2176
|