init
Browse files- README.md +28 -0
- convert_mvdream_to_diffusers.py +408 -0
- main.py +11 -0
- mvdream/attention.py +352 -0
- mvdream/models.py +775 -0
- mvdream/pipeline_mvdream.py +484 -0
- mvdream/util.py +320 -0
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MVDream-hf
|
2 |
+
|
3 |
+
modified from https://github.com/KokeCacao/mvdream-hf.
|
4 |
+
|
5 |
+
### convert weights
|
6 |
+
```bash
|
7 |
+
# download original ckpt
|
8 |
+
wget https://huggingface.co/MVDream/MVDream/resolve/main/sd-v2.1-base-4view.pt
|
9 |
+
wget https://raw.githubusercontent.com/bytedance/MVDream/main/mvdream/configs/sd-v2-base.yaml
|
10 |
+
|
11 |
+
# convert
|
12 |
+
python convert_mvdream_to_diffusers.py --checkpoint_path ./sd-v2.1-base-4view.pt --dump_path ./weights --original_config_file ./sd-v2-base.yaml --half --to_safetensors --test
|
13 |
+
```
|
14 |
+
|
15 |
+
### run pipeline
|
16 |
+
```python
|
17 |
+
import torch
|
18 |
+
import kiui
|
19 |
+
from mvdream.pipeline_mvdream import MVDreamStableDiffusionPipeline
|
20 |
+
|
21 |
+
pipe = MVDreamStableDiffusionPipeline.from_pretrained('./weights', torch_dtype=torch.float16)
|
22 |
+
pipe = pipe.to("cuda")
|
23 |
+
|
24 |
+
prompt = "a photo of an astronaut riding a horse on mars"
|
25 |
+
image = pipe(prompt) # np.ndarray [4, 256, 256, 3]
|
26 |
+
|
27 |
+
kiui.vis.plot_image(image)
|
28 |
+
```
|
convert_mvdream_to_diffusers.py
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from https://github.com/huggingface/diffusers/blob/bc691231360a4cbc7d19a58742ebb8ed0f05e027/scripts/convert_original_stable_diffusion_to_diffusers.py
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
import torch
|
5 |
+
import sys
|
6 |
+
|
7 |
+
sys.path.insert(0, '.')
|
8 |
+
|
9 |
+
from diffusers.models import (
|
10 |
+
AutoencoderKL,
|
11 |
+
)
|
12 |
+
from omegaconf import OmegaConf
|
13 |
+
from diffusers.schedulers import DDIMScheduler
|
14 |
+
from diffusers.utils import logging
|
15 |
+
from typing import Any
|
16 |
+
from accelerate import init_empty_weights
|
17 |
+
from accelerate.utils import set_module_tensor_to_device
|
18 |
+
from mvdream.models import MultiViewUNetWrapperModel
|
19 |
+
from mvdream.pipeline_mvdream import MVDreamStableDiffusionPipeline
|
20 |
+
from transformers import CLIPTokenizer, CLIPTextModel
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
def assign_to_checkpoint(paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None):
|
26 |
+
"""
|
27 |
+
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
|
28 |
+
attention layers, and takes into account additional replacements that may arise.
|
29 |
+
Assigns the weights to the new checkpoint.
|
30 |
+
"""
|
31 |
+
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
32 |
+
|
33 |
+
# Splits the attention layers into three variables.
|
34 |
+
if attention_paths_to_split is not None:
|
35 |
+
for path, path_map in attention_paths_to_split.items():
|
36 |
+
old_tensor = old_checkpoint[path]
|
37 |
+
channels = old_tensor.shape[0] // 3
|
38 |
+
|
39 |
+
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
|
40 |
+
|
41 |
+
assert config is not None
|
42 |
+
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
|
43 |
+
|
44 |
+
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
|
45 |
+
query, key, value = old_tensor.split(channels // num_heads, dim=1)
|
46 |
+
|
47 |
+
checkpoint[path_map["query"]] = query.reshape(target_shape)
|
48 |
+
checkpoint[path_map["key"]] = key.reshape(target_shape)
|
49 |
+
checkpoint[path_map["value"]] = value.reshape(target_shape)
|
50 |
+
|
51 |
+
for path in paths:
|
52 |
+
new_path = path["new"]
|
53 |
+
|
54 |
+
# These have already been assigned
|
55 |
+
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
|
56 |
+
continue
|
57 |
+
|
58 |
+
# Global renaming happens here
|
59 |
+
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
|
60 |
+
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
61 |
+
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
|
62 |
+
|
63 |
+
if additional_replacements is not None:
|
64 |
+
for replacement in additional_replacements:
|
65 |
+
new_path = new_path.replace(replacement["old"], replacement["new"])
|
66 |
+
|
67 |
+
# proj_attn.weight has to be converted from conv 1D to linear
|
68 |
+
is_attn_weight = "proj_attn.weight" in new_path or ("attentions" in new_path and "to_" in new_path)
|
69 |
+
shape = old_checkpoint[path["old"]].shape
|
70 |
+
if is_attn_weight and len(shape) == 3:
|
71 |
+
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
72 |
+
elif is_attn_weight and len(shape) == 4:
|
73 |
+
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0]
|
74 |
+
else:
|
75 |
+
checkpoint[new_path] = old_checkpoint[path["old"]]
|
76 |
+
|
77 |
+
|
78 |
+
def shave_segments(path, n_shave_prefix_segments=1):
|
79 |
+
"""
|
80 |
+
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
81 |
+
"""
|
82 |
+
if n_shave_prefix_segments >= 0:
|
83 |
+
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
84 |
+
else:
|
85 |
+
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
86 |
+
|
87 |
+
|
88 |
+
def create_vae_diffusers_config(original_config, image_size: int):
|
89 |
+
"""
|
90 |
+
Creates a config for the diffusers based on the config of the LDM model.
|
91 |
+
"""
|
92 |
+
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
93 |
+
_ = original_config.model.params.first_stage_config.params.embed_dim
|
94 |
+
|
95 |
+
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
|
96 |
+
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
|
97 |
+
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
|
98 |
+
|
99 |
+
config = {
|
100 |
+
"sample_size": image_size,
|
101 |
+
"in_channels": vae_params.in_channels,
|
102 |
+
"out_channels": vae_params.out_ch,
|
103 |
+
"down_block_types": tuple(down_block_types),
|
104 |
+
"up_block_types": tuple(up_block_types),
|
105 |
+
"block_out_channels": tuple(block_out_channels),
|
106 |
+
"latent_channels": vae_params.z_channels,
|
107 |
+
"layers_per_block": vae_params.num_res_blocks,
|
108 |
+
}
|
109 |
+
return config
|
110 |
+
|
111 |
+
|
112 |
+
def convert_ldm_vae_checkpoint(checkpoint, config):
|
113 |
+
# extract state dict for VAE
|
114 |
+
vae_state_dict = {}
|
115 |
+
vae_key = "first_stage_model."
|
116 |
+
keys = list(checkpoint.keys())
|
117 |
+
for key in keys:
|
118 |
+
if key.startswith(vae_key):
|
119 |
+
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
120 |
+
|
121 |
+
new_checkpoint = {}
|
122 |
+
|
123 |
+
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
124 |
+
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
125 |
+
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
|
126 |
+
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
127 |
+
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
|
128 |
+
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
|
129 |
+
|
130 |
+
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
131 |
+
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
132 |
+
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
|
133 |
+
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
134 |
+
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
|
135 |
+
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
|
136 |
+
|
137 |
+
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
138 |
+
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
139 |
+
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
140 |
+
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
141 |
+
|
142 |
+
# Retrieves the keys for the encoder down blocks only
|
143 |
+
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
|
144 |
+
down_blocks = {layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)}
|
145 |
+
|
146 |
+
# Retrieves the keys for the decoder up blocks only
|
147 |
+
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
|
148 |
+
up_blocks = {layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)}
|
149 |
+
|
150 |
+
for i in range(num_down_blocks):
|
151 |
+
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
|
152 |
+
|
153 |
+
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
154 |
+
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight")
|
155 |
+
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias")
|
156 |
+
|
157 |
+
paths = renew_vae_resnet_paths(resnets)
|
158 |
+
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
159 |
+
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
160 |
+
|
161 |
+
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
162 |
+
num_mid_res_blocks = 2
|
163 |
+
for i in range(1, num_mid_res_blocks + 1):
|
164 |
+
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
165 |
+
|
166 |
+
paths = renew_vae_resnet_paths(resnets)
|
167 |
+
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
168 |
+
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
169 |
+
|
170 |
+
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
171 |
+
paths = renew_vae_attention_paths(mid_attentions)
|
172 |
+
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
173 |
+
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
174 |
+
conv_attn_to_linear(new_checkpoint)
|
175 |
+
|
176 |
+
for i in range(num_up_blocks):
|
177 |
+
block_id = num_up_blocks - 1 - i
|
178 |
+
resnets = [key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key]
|
179 |
+
|
180 |
+
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
181 |
+
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"]
|
182 |
+
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"]
|
183 |
+
|
184 |
+
paths = renew_vae_resnet_paths(resnets)
|
185 |
+
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
186 |
+
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
187 |
+
|
188 |
+
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
189 |
+
num_mid_res_blocks = 2
|
190 |
+
for i in range(1, num_mid_res_blocks + 1):
|
191 |
+
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
192 |
+
|
193 |
+
paths = renew_vae_resnet_paths(resnets)
|
194 |
+
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
195 |
+
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
196 |
+
|
197 |
+
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
198 |
+
paths = renew_vae_attention_paths(mid_attentions)
|
199 |
+
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
200 |
+
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
201 |
+
conv_attn_to_linear(new_checkpoint)
|
202 |
+
return new_checkpoint
|
203 |
+
|
204 |
+
|
205 |
+
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
|
206 |
+
"""
|
207 |
+
Updates paths inside resnets to the new naming scheme (local renaming)
|
208 |
+
"""
|
209 |
+
mapping = []
|
210 |
+
for old_item in old_list:
|
211 |
+
new_item = old_item
|
212 |
+
|
213 |
+
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
|
214 |
+
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
215 |
+
|
216 |
+
mapping.append({"old": old_item, "new": new_item})
|
217 |
+
|
218 |
+
return mapping
|
219 |
+
|
220 |
+
|
221 |
+
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
222 |
+
"""
|
223 |
+
Updates paths inside attentions to the new naming scheme (local renaming)
|
224 |
+
"""
|
225 |
+
mapping = []
|
226 |
+
for old_item in old_list:
|
227 |
+
new_item = old_item
|
228 |
+
|
229 |
+
new_item = new_item.replace("norm.weight", "group_norm.weight")
|
230 |
+
new_item = new_item.replace("norm.bias", "group_norm.bias")
|
231 |
+
|
232 |
+
new_item = new_item.replace("q.weight", "to_q.weight")
|
233 |
+
new_item = new_item.replace("q.bias", "to_q.bias")
|
234 |
+
|
235 |
+
new_item = new_item.replace("k.weight", "to_k.weight")
|
236 |
+
new_item = new_item.replace("k.bias", "to_k.bias")
|
237 |
+
|
238 |
+
new_item = new_item.replace("v.weight", "to_v.weight")
|
239 |
+
new_item = new_item.replace("v.bias", "to_v.bias")
|
240 |
+
|
241 |
+
new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
|
242 |
+
new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
|
243 |
+
|
244 |
+
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
245 |
+
|
246 |
+
mapping.append({"old": old_item, "new": new_item})
|
247 |
+
|
248 |
+
return mapping
|
249 |
+
|
250 |
+
|
251 |
+
def conv_attn_to_linear(checkpoint):
|
252 |
+
keys = list(checkpoint.keys())
|
253 |
+
attn_keys = ["query.weight", "key.weight", "value.weight"]
|
254 |
+
for key in keys:
|
255 |
+
if ".".join(key.split(".")[-2:]) in attn_keys:
|
256 |
+
if checkpoint[key].ndim > 2:
|
257 |
+
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
258 |
+
elif "proj_attn.weight" in key:
|
259 |
+
if checkpoint[key].ndim > 2:
|
260 |
+
checkpoint[key] = checkpoint[key][:, :, 0]
|
261 |
+
|
262 |
+
def create_unet_config(original_config) -> Any:
|
263 |
+
return OmegaConf.to_container(original_config.model.params.unet_config.params, resolve=True)
|
264 |
+
|
265 |
+
def convert_from_original_mvdream_ckpt(checkpoint_path, original_config_file, device):
|
266 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
267 |
+
# print(f"Checkpoint: {checkpoint.keys()}")
|
268 |
+
torch.cuda.empty_cache()
|
269 |
+
|
270 |
+
original_config = OmegaConf.load(original_config_file)
|
271 |
+
# print(f"Original Config: {original_config}")
|
272 |
+
prediction_type = "epsilon"
|
273 |
+
image_size = 256
|
274 |
+
num_train_timesteps = getattr(original_config.model.params, "timesteps", None) or 1000
|
275 |
+
beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02
|
276 |
+
beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085
|
277 |
+
scheduler = DDIMScheduler(
|
278 |
+
beta_end=beta_end,
|
279 |
+
beta_schedule="scaled_linear",
|
280 |
+
beta_start=beta_start,
|
281 |
+
num_train_timesteps=num_train_timesteps,
|
282 |
+
steps_offset=1,
|
283 |
+
clip_sample=False,
|
284 |
+
set_alpha_to_one=False,
|
285 |
+
prediction_type=prediction_type,
|
286 |
+
)
|
287 |
+
scheduler.register_to_config(clip_sample=False)
|
288 |
+
|
289 |
+
# Convert the UNet2DConditionModel model.
|
290 |
+
# upcast_attention = None
|
291 |
+
# unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
|
292 |
+
# unet_config["upcast_attention"] = upcast_attention
|
293 |
+
# with init_empty_weights():
|
294 |
+
# unet = UNet2DConditionModel(**unet_config)
|
295 |
+
# converted_unet_checkpoint = convert_ldm_unet_checkpoint(
|
296 |
+
# checkpoint, unet_config, path=None, extract_ema=extract_ema
|
297 |
+
# )
|
298 |
+
# print(f"Unet Config: {original_config.model.params.unet_config.params}")
|
299 |
+
unet_config = create_unet_config(original_config)
|
300 |
+
unet: MultiViewUNetWrapperModel = MultiViewUNetWrapperModel(**unet_config)
|
301 |
+
unet.register_to_config(**unet_config)
|
302 |
+
# print(f"Unet State Dict: {unet.state_dict().keys()}")
|
303 |
+
unet.load_state_dict({key.replace("model.diffusion_model.", "unet."): value for key, value in checkpoint.items() if key.replace("model.diffusion_model.", "unet.") in unet.state_dict()})
|
304 |
+
for param_name, param in unet.state_dict().items():
|
305 |
+
set_module_tensor_to_device(unet, param_name, device=device, value=param)
|
306 |
+
|
307 |
+
# Convert the VAE model.
|
308 |
+
vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
|
309 |
+
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
|
310 |
+
|
311 |
+
if ("model" in original_config and "params" in original_config.model and "scale_factor" in original_config.model.params):
|
312 |
+
vae_scaling_factor = original_config.model.params.scale_factor
|
313 |
+
else:
|
314 |
+
vae_scaling_factor = 0.18215 # default SD scaling factor
|
315 |
+
|
316 |
+
vae_config["scaling_factor"] = vae_scaling_factor
|
317 |
+
|
318 |
+
with init_empty_weights():
|
319 |
+
vae = AutoencoderKL(**vae_config)
|
320 |
+
|
321 |
+
for param_name, param in converted_vae_checkpoint.items():
|
322 |
+
set_module_tensor_to_device(vae, param_name, device=device, value=param)
|
323 |
+
|
324 |
+
if original_config.model.params.unet_config.params.context_dim == 768:
|
325 |
+
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
326 |
+
text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14").to(device=device) # type: ignore
|
327 |
+
elif original_config.model.params.unet_config.params.context_dim == 1024:
|
328 |
+
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="tokenizer")
|
329 |
+
text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="text_encoder").to(device=device) # type: ignore
|
330 |
+
else:
|
331 |
+
raise ValueError(f"Unknown context_dim: {original_config.model.paams.unet_config.params.context_dim}")
|
332 |
+
|
333 |
+
pipe = MVDreamStableDiffusionPipeline(
|
334 |
+
vae=vae,
|
335 |
+
unet=unet,
|
336 |
+
tokenizer=tokenizer,
|
337 |
+
text_encoder=text_encoder,
|
338 |
+
scheduler=scheduler,
|
339 |
+
)
|
340 |
+
|
341 |
+
return pipe
|
342 |
+
|
343 |
+
|
344 |
+
if __name__ == "__main__":
|
345 |
+
parser = argparse.ArgumentParser()
|
346 |
+
|
347 |
+
parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert.")
|
348 |
+
parser.add_argument(
|
349 |
+
"--original_config_file",
|
350 |
+
default=None,
|
351 |
+
type=str,
|
352 |
+
help="The YAML config file corresponding to the original architecture.",
|
353 |
+
)
|
354 |
+
parser.add_argument(
|
355 |
+
"--to_safetensors",
|
356 |
+
action="store_true",
|
357 |
+
help="Whether to store pipeline in safetensors format or not.",
|
358 |
+
)
|
359 |
+
parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
|
360 |
+
parser.add_argument("--test", action="store_true", help="Whether to test inference after convertion.")
|
361 |
+
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
|
362 |
+
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
|
363 |
+
args = parser.parse_args()
|
364 |
+
|
365 |
+
args.device = torch.device(args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu")
|
366 |
+
|
367 |
+
pipe = convert_from_original_mvdream_ckpt(
|
368 |
+
checkpoint_path=args.checkpoint_path,
|
369 |
+
original_config_file=args.original_config_file,
|
370 |
+
device=args.device,
|
371 |
+
)
|
372 |
+
|
373 |
+
if args.half:
|
374 |
+
pipe.to(torch_dtype=torch.float16)
|
375 |
+
|
376 |
+
print(f"Saving pipeline to {args.dump_path}...")
|
377 |
+
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
|
378 |
+
|
379 |
+
if args.test:
|
380 |
+
try:
|
381 |
+
print(f"Testing each subcomponent of the pipeline...")
|
382 |
+
images = pipe(
|
383 |
+
prompt="Head of Hatsune Miku",
|
384 |
+
negative_prompt="painting, bad quality, flat",
|
385 |
+
output_type="pil",
|
386 |
+
guidance_scale=7.5,
|
387 |
+
num_inference_steps=50,
|
388 |
+
device=args.device,
|
389 |
+
)
|
390 |
+
for i, image in enumerate(images):
|
391 |
+
image.save(f"image_{i}.png") # type: ignore
|
392 |
+
|
393 |
+
print(f"Testing entire pipeline...")
|
394 |
+
loaded_pipe: MVDreamStableDiffusionPipeline = MVDreamStableDiffusionPipeline.from_pretrained(args.dump_path, safe_serialization=args.to_safetensors) # type: ignore
|
395 |
+
images = loaded_pipe(
|
396 |
+
prompt="Head of Hatsune Miku",
|
397 |
+
negative_prompt="painting, bad quality, flat",
|
398 |
+
output_type="pil",
|
399 |
+
guidance_scale=7.5,
|
400 |
+
num_inference_steps=50,
|
401 |
+
device=args.device,
|
402 |
+
)
|
403 |
+
for i, image in enumerate(images):
|
404 |
+
image.save(f"image_{i}.png") # type: ignore
|
405 |
+
except Exception as e:
|
406 |
+
print(f"Failed to test inference: {e}")
|
407 |
+
raise e from e
|
408 |
+
print("Inference test passed!")
|
main.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import kiui
|
3 |
+
from mvdream.pipeline_mvdream import MVDreamStableDiffusionPipeline
|
4 |
+
|
5 |
+
pipe = MVDreamStableDiffusionPipeline.from_pretrained('./weights', torch_dtype=torch.float16)
|
6 |
+
pipe = pipe.to("cuda")
|
7 |
+
|
8 |
+
prompt = "a photo of an astronaut riding a horse on mars"
|
9 |
+
image = pipe(prompt)
|
10 |
+
|
11 |
+
kiui.vis.plot_image(image)
|
mvdream/attention.py
ADDED
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# obtained and modified from https://github.com/bytedance/MVDream
|
2 |
+
|
3 |
+
import math
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from inspect import isfunction
|
8 |
+
from torch import nn, einsum
|
9 |
+
from torch.amp.autocast_mode import autocast
|
10 |
+
from einops import rearrange, repeat
|
11 |
+
from typing import Optional, Any
|
12 |
+
from .util import checkpoint
|
13 |
+
|
14 |
+
try:
|
15 |
+
import xformers # type: ignore
|
16 |
+
import xformers.ops # type: ignore
|
17 |
+
XFORMERS_IS_AVAILBLE = True
|
18 |
+
except:
|
19 |
+
XFORMERS_IS_AVAILBLE = False
|
20 |
+
|
21 |
+
# CrossAttn precision handling
|
22 |
+
import os
|
23 |
+
|
24 |
+
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
|
25 |
+
|
26 |
+
|
27 |
+
def uniq(arr):
|
28 |
+
return {el: True for el in arr}.keys()
|
29 |
+
|
30 |
+
|
31 |
+
def default(val, d):
|
32 |
+
if val is not None:
|
33 |
+
return val
|
34 |
+
return d() if isfunction(d) else d
|
35 |
+
|
36 |
+
|
37 |
+
def max_neg_value(t):
|
38 |
+
return -torch.finfo(t.dtype).max
|
39 |
+
|
40 |
+
|
41 |
+
def init_(tensor):
|
42 |
+
dim = tensor.shape[-1]
|
43 |
+
std = 1 / math.sqrt(dim)
|
44 |
+
tensor.uniform_(-std, std)
|
45 |
+
return tensor
|
46 |
+
|
47 |
+
|
48 |
+
# feedforward
|
49 |
+
class GEGLU(nn.Module):
|
50 |
+
|
51 |
+
def __init__(self, dim_in, dim_out):
|
52 |
+
super().__init__()
|
53 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
57 |
+
return x * F.gelu(gate)
|
58 |
+
|
59 |
+
|
60 |
+
class FeedForward(nn.Module):
|
61 |
+
|
62 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
63 |
+
super().__init__()
|
64 |
+
inner_dim = int(dim * mult)
|
65 |
+
dim_out = default(dim_out, dim)
|
66 |
+
project_in = nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim)
|
67 |
+
|
68 |
+
self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
return self.net(x)
|
72 |
+
|
73 |
+
|
74 |
+
def zero_module(module):
|
75 |
+
"""
|
76 |
+
Zero out the parameters of a module and return it.
|
77 |
+
"""
|
78 |
+
for p in module.parameters():
|
79 |
+
p.detach().zero_()
|
80 |
+
return module
|
81 |
+
|
82 |
+
|
83 |
+
def Normalize(in_channels):
|
84 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
85 |
+
|
86 |
+
|
87 |
+
class SpatialSelfAttention(nn.Module):
|
88 |
+
|
89 |
+
def __init__(self, in_channels):
|
90 |
+
super().__init__()
|
91 |
+
self.in_channels = in_channels
|
92 |
+
|
93 |
+
self.norm = Normalize(in_channels)
|
94 |
+
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
95 |
+
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
96 |
+
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
97 |
+
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
h_ = x
|
101 |
+
h_ = self.norm(h_)
|
102 |
+
q = self.q(h_)
|
103 |
+
k = self.k(h_)
|
104 |
+
v = self.v(h_)
|
105 |
+
|
106 |
+
# compute attention
|
107 |
+
b, c, h, w = q.shape
|
108 |
+
q = rearrange(q, 'b c h w -> b (h w) c')
|
109 |
+
k = rearrange(k, 'b c h w -> b c (h w)')
|
110 |
+
w_ = torch.einsum('bij,bjk->bik', q, k)
|
111 |
+
|
112 |
+
w_ = w_ * (int(c)**(-0.5))
|
113 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
114 |
+
|
115 |
+
# attend to values
|
116 |
+
v = rearrange(v, 'b c h w -> b c (h w)')
|
117 |
+
w_ = rearrange(w_, 'b i j -> b j i')
|
118 |
+
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
119 |
+
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
120 |
+
h_ = self.proj_out(h_)
|
121 |
+
|
122 |
+
return x + h_
|
123 |
+
|
124 |
+
|
125 |
+
class CrossAttention(nn.Module):
|
126 |
+
|
127 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
128 |
+
super().__init__()
|
129 |
+
inner_dim = dim_head * heads
|
130 |
+
context_dim = default(context_dim, query_dim)
|
131 |
+
|
132 |
+
self.scale = dim_head**-0.5
|
133 |
+
self.heads = heads
|
134 |
+
|
135 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
136 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
137 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
138 |
+
|
139 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
140 |
+
|
141 |
+
def forward(self, x, context=None, mask=None):
|
142 |
+
h = self.heads
|
143 |
+
|
144 |
+
q = self.to_q(x)
|
145 |
+
context = default(context, x)
|
146 |
+
k = self.to_k(context)
|
147 |
+
v = self.to_v(context)
|
148 |
+
|
149 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
150 |
+
|
151 |
+
# force cast to fp32 to avoid overflowing
|
152 |
+
if _ATTN_PRECISION == "fp32":
|
153 |
+
with autocast(enabled=False, device_type='cuda'):
|
154 |
+
q, k = q.float(), k.float()
|
155 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
156 |
+
else:
|
157 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
158 |
+
|
159 |
+
del q, k
|
160 |
+
|
161 |
+
if mask is not None:
|
162 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
163 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
164 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
165 |
+
sim.masked_fill_(~mask, max_neg_value)
|
166 |
+
|
167 |
+
# attention, what we cannot get enough of
|
168 |
+
sim = sim.softmax(dim=-1)
|
169 |
+
|
170 |
+
out = einsum('b i j, b j d -> b i d', sim, v)
|
171 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
172 |
+
return self.to_out(out)
|
173 |
+
|
174 |
+
|
175 |
+
class MemoryEfficientCrossAttention(nn.Module):
|
176 |
+
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
177 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
|
178 |
+
super().__init__()
|
179 |
+
# print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using {heads} heads.")
|
180 |
+
inner_dim = dim_head * heads
|
181 |
+
context_dim = default(context_dim, query_dim)
|
182 |
+
|
183 |
+
self.heads = heads
|
184 |
+
self.dim_head = dim_head
|
185 |
+
|
186 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
187 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
188 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
189 |
+
|
190 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
191 |
+
self.attention_op: Optional[Any] = None
|
192 |
+
|
193 |
+
def forward(self, x, context=None, mask=None):
|
194 |
+
q = self.to_q(x)
|
195 |
+
context = default(context, x)
|
196 |
+
k = self.to_k(context)
|
197 |
+
v = self.to_v(context)
|
198 |
+
|
199 |
+
b, _, _ = q.shape
|
200 |
+
q, k, v = map(
|
201 |
+
lambda t: t.unsqueeze(3).reshape(b, t.shape[1], self.heads, self.dim_head).permute(0, 2, 1, 3).reshape(b * self.heads, t.shape[1], self.dim_head).contiguous(),
|
202 |
+
(q, k, v),
|
203 |
+
)
|
204 |
+
|
205 |
+
# actually compute the attention, what we cannot get enough of
|
206 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
207 |
+
|
208 |
+
if mask is not None:
|
209 |
+
raise NotImplementedError
|
210 |
+
out = (out.unsqueeze(0).reshape(b, self.heads, out.shape[1], self.dim_head).permute(0, 2, 1, 3).reshape(b, out.shape[1], self.heads * self.dim_head))
|
211 |
+
return self.to_out(out)
|
212 |
+
|
213 |
+
|
214 |
+
class BasicTransformerBlock(nn.Module):
|
215 |
+
ATTENTION_MODES = {
|
216 |
+
"softmax": CrossAttention, # vanilla attention
|
217 |
+
"softmax-xformers": MemoryEfficientCrossAttention
|
218 |
+
}
|
219 |
+
|
220 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, disable_self_attn=False):
|
221 |
+
super().__init__()
|
222 |
+
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
|
223 |
+
assert attn_mode in self.ATTENTION_MODES
|
224 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
225 |
+
self.disable_self_attn = disable_self_attn
|
226 |
+
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
|
227 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
228 |
+
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
229 |
+
self.norm1 = nn.LayerNorm(dim)
|
230 |
+
self.norm2 = nn.LayerNorm(dim)
|
231 |
+
self.norm3 = nn.LayerNorm(dim)
|
232 |
+
self.checkpoint = checkpoint
|
233 |
+
|
234 |
+
def forward(self, x, context=None):
|
235 |
+
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
236 |
+
|
237 |
+
def _forward(self, x, context=None):
|
238 |
+
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
|
239 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
240 |
+
x = self.ff(self.norm3(x)) + x
|
241 |
+
return x
|
242 |
+
|
243 |
+
|
244 |
+
class SpatialTransformer(nn.Module):
|
245 |
+
"""
|
246 |
+
Transformer block for image-like data.
|
247 |
+
First, project the input (aka embedding)
|
248 |
+
and reshape to b, t, d.
|
249 |
+
Then apply standard transformer action.
|
250 |
+
Finally, reshape to image
|
251 |
+
NEW: use_linear for more efficiency instead of the 1x1 convs
|
252 |
+
"""
|
253 |
+
|
254 |
+
def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None, disable_self_attn=False, use_linear=False, use_checkpoint=True):
|
255 |
+
super().__init__()
|
256 |
+
assert context_dim is not None
|
257 |
+
if not isinstance(context_dim, list):
|
258 |
+
context_dim = [context_dim]
|
259 |
+
self.in_channels = in_channels
|
260 |
+
inner_dim = n_heads * d_head
|
261 |
+
self.norm = Normalize(in_channels)
|
262 |
+
if not use_linear:
|
263 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
264 |
+
else:
|
265 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
266 |
+
|
267 |
+
self.transformer_blocks = nn.ModuleList([BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], disable_self_attn=disable_self_attn, checkpoint=use_checkpoint) for d in range(depth)])
|
268 |
+
if not use_linear:
|
269 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
|
270 |
+
else:
|
271 |
+
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
272 |
+
self.use_linear = use_linear
|
273 |
+
|
274 |
+
def forward(self, x, context=None):
|
275 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
276 |
+
if not isinstance(context, list):
|
277 |
+
context = [context]
|
278 |
+
b, c, h, w = x.shape
|
279 |
+
x_in = x
|
280 |
+
x = self.norm(x)
|
281 |
+
if not self.use_linear:
|
282 |
+
x = self.proj_in(x)
|
283 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
284 |
+
if self.use_linear:
|
285 |
+
x = self.proj_in(x)
|
286 |
+
for i, block in enumerate(self.transformer_blocks):
|
287 |
+
x = block(x, context=context[i])
|
288 |
+
if self.use_linear:
|
289 |
+
x = self.proj_out(x)
|
290 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
291 |
+
if not self.use_linear:
|
292 |
+
x = self.proj_out(x)
|
293 |
+
return x + x_in
|
294 |
+
|
295 |
+
|
296 |
+
class BasicTransformerBlock3D(BasicTransformerBlock):
|
297 |
+
|
298 |
+
def forward(self, x, context=None, num_frames=1):
|
299 |
+
return checkpoint(self._forward, (x, context, num_frames), self.parameters(), self.checkpoint)
|
300 |
+
|
301 |
+
def _forward(self, x, context=None, num_frames=1):
|
302 |
+
x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
|
303 |
+
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
|
304 |
+
x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
|
305 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
306 |
+
x = self.ff(self.norm3(x)) + x
|
307 |
+
return x
|
308 |
+
|
309 |
+
|
310 |
+
class SpatialTransformer3D(nn.Module):
|
311 |
+
''' 3D self-attention '''
|
312 |
+
|
313 |
+
def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None, disable_self_attn=False, use_linear=False, use_checkpoint=True):
|
314 |
+
super().__init__()
|
315 |
+
assert context_dim is not None
|
316 |
+
if not isinstance(context_dim, list):
|
317 |
+
context_dim = [context_dim]
|
318 |
+
self.in_channels = in_channels
|
319 |
+
inner_dim = n_heads * d_head
|
320 |
+
self.norm = Normalize(in_channels)
|
321 |
+
if not use_linear:
|
322 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
323 |
+
else:
|
324 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
325 |
+
|
326 |
+
self.transformer_blocks = nn.ModuleList([BasicTransformerBlock3D(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], disable_self_attn=disable_self_attn, checkpoint=use_checkpoint) for d in range(depth)])
|
327 |
+
if not use_linear:
|
328 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
|
329 |
+
else:
|
330 |
+
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
331 |
+
self.use_linear = use_linear
|
332 |
+
|
333 |
+
def forward(self, x, context=None, num_frames=1):
|
334 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
335 |
+
if not isinstance(context, list):
|
336 |
+
context = [context]
|
337 |
+
b, c, h, w = x.shape
|
338 |
+
x_in = x
|
339 |
+
x = self.norm(x)
|
340 |
+
if not self.use_linear:
|
341 |
+
x = self.proj_in(x)
|
342 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
343 |
+
if self.use_linear:
|
344 |
+
x = self.proj_in(x)
|
345 |
+
for i, block in enumerate(self.transformer_blocks):
|
346 |
+
x = block(x, context=context[i], num_frames=num_frames)
|
347 |
+
if self.use_linear:
|
348 |
+
x = self.proj_out(x)
|
349 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
350 |
+
if not self.use_linear:
|
351 |
+
x = self.proj_out(x)
|
352 |
+
return x + x_in
|
mvdream/models.py
ADDED
@@ -0,0 +1,775 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# obtained and modified from https://github.com/bytedance/MVDream
|
2 |
+
|
3 |
+
import math
|
4 |
+
import numpy as np
|
5 |
+
import torch as th
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
from abc import abstractmethod
|
10 |
+
from .util import (
|
11 |
+
checkpoint,
|
12 |
+
conv_nd,
|
13 |
+
linear,
|
14 |
+
avg_pool_nd,
|
15 |
+
zero_module,
|
16 |
+
normalization,
|
17 |
+
timestep_embedding,
|
18 |
+
)
|
19 |
+
from .attention import SpatialTransformer, SpatialTransformer3D
|
20 |
+
from diffusers.configuration_utils import ConfigMixin
|
21 |
+
from diffusers.models.modeling_utils import ModelMixin
|
22 |
+
from typing import Any, List, Optional
|
23 |
+
from torch import Tensor
|
24 |
+
|
25 |
+
|
26 |
+
class MultiViewUNetWrapperModel(ModelMixin, ConfigMixin):
|
27 |
+
|
28 |
+
def __init__(self,
|
29 |
+
image_size,
|
30 |
+
in_channels,
|
31 |
+
model_channels,
|
32 |
+
out_channels,
|
33 |
+
num_res_blocks,
|
34 |
+
attention_resolutions,
|
35 |
+
dropout=0,
|
36 |
+
channel_mult=(1, 2, 4, 8),
|
37 |
+
conv_resample=True,
|
38 |
+
dims=2,
|
39 |
+
num_classes=None,
|
40 |
+
use_checkpoint=False,
|
41 |
+
num_heads=-1,
|
42 |
+
num_head_channels=-1,
|
43 |
+
num_heads_upsample=-1,
|
44 |
+
use_scale_shift_norm=False,
|
45 |
+
resblock_updown=False,
|
46 |
+
use_new_attention_order=False,
|
47 |
+
use_spatial_transformer=False, # custom transformer support
|
48 |
+
transformer_depth=1, # custom transformer support
|
49 |
+
context_dim=None, # custom transformer support
|
50 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
51 |
+
legacy=True,
|
52 |
+
disable_self_attentions=None,
|
53 |
+
num_attention_blocks=None,
|
54 |
+
disable_middle_self_attn=False,
|
55 |
+
use_linear_in_transformer=False,
|
56 |
+
adm_in_channels=None,
|
57 |
+
camera_dim=None,):
|
58 |
+
super().__init__()
|
59 |
+
self.unet: MultiViewUNetModel = MultiViewUNetModel(
|
60 |
+
image_size=image_size,
|
61 |
+
in_channels=in_channels,
|
62 |
+
model_channels=model_channels,
|
63 |
+
out_channels=out_channels,
|
64 |
+
num_res_blocks=num_res_blocks,
|
65 |
+
attention_resolutions=attention_resolutions,
|
66 |
+
dropout=dropout,
|
67 |
+
channel_mult=channel_mult,
|
68 |
+
conv_resample=conv_resample,
|
69 |
+
dims=dims,
|
70 |
+
num_classes=num_classes,
|
71 |
+
use_checkpoint=use_checkpoint,
|
72 |
+
num_heads=num_heads,
|
73 |
+
num_head_channels=num_head_channels,
|
74 |
+
num_heads_upsample=num_heads_upsample,
|
75 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
76 |
+
resblock_updown=resblock_updown,
|
77 |
+
use_new_attention_order=use_new_attention_order,
|
78 |
+
use_spatial_transformer=use_spatial_transformer,
|
79 |
+
transformer_depth=transformer_depth,
|
80 |
+
context_dim=context_dim,
|
81 |
+
n_embed=n_embed,
|
82 |
+
legacy=legacy,
|
83 |
+
disable_self_attentions=disable_self_attentions,
|
84 |
+
num_attention_blocks=num_attention_blocks,
|
85 |
+
disable_middle_self_attn=disable_middle_self_attn,
|
86 |
+
use_linear_in_transformer=use_linear_in_transformer,
|
87 |
+
adm_in_channels=adm_in_channels,
|
88 |
+
camera_dim=camera_dim,
|
89 |
+
)
|
90 |
+
|
91 |
+
def forward(self, *args, **kwargs):
|
92 |
+
return self.unet(*args, **kwargs)
|
93 |
+
|
94 |
+
|
95 |
+
class TimestepBlock(nn.Module):
|
96 |
+
"""
|
97 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
98 |
+
"""
|
99 |
+
|
100 |
+
@abstractmethod
|
101 |
+
def forward(self, x, emb):
|
102 |
+
"""
|
103 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
104 |
+
"""
|
105 |
+
|
106 |
+
|
107 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
108 |
+
"""
|
109 |
+
A sequential module that passes timestep embeddings to the children that
|
110 |
+
support it as an extra input.
|
111 |
+
"""
|
112 |
+
|
113 |
+
def forward(self, x, emb, context=None, num_frames=1):
|
114 |
+
for layer in self:
|
115 |
+
if isinstance(layer, TimestepBlock):
|
116 |
+
x = layer(x, emb)
|
117 |
+
elif isinstance(layer, SpatialTransformer3D):
|
118 |
+
x = layer(x, context, num_frames=num_frames)
|
119 |
+
elif isinstance(layer, SpatialTransformer):
|
120 |
+
x = layer(x, context)
|
121 |
+
else:
|
122 |
+
x = layer(x)
|
123 |
+
return x
|
124 |
+
|
125 |
+
|
126 |
+
class Upsample(nn.Module):
|
127 |
+
"""
|
128 |
+
An upsampling layer with an optional convolution.
|
129 |
+
:param channels: channels in the inputs and outputs.
|
130 |
+
:param use_conv: a bool determining if a convolution is applied.
|
131 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
132 |
+
upsampling occurs in the inner-two dimensions.
|
133 |
+
"""
|
134 |
+
|
135 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
136 |
+
super().__init__()
|
137 |
+
self.channels = channels
|
138 |
+
self.out_channels = out_channels or channels
|
139 |
+
self.use_conv = use_conv
|
140 |
+
self.dims = dims
|
141 |
+
if use_conv:
|
142 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
143 |
+
|
144 |
+
def forward(self, x):
|
145 |
+
assert x.shape[1] == self.channels
|
146 |
+
if self.dims == 3:
|
147 |
+
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
|
148 |
+
else:
|
149 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
150 |
+
if self.use_conv:
|
151 |
+
x = self.conv(x)
|
152 |
+
return x
|
153 |
+
|
154 |
+
|
155 |
+
class Downsample(nn.Module):
|
156 |
+
"""
|
157 |
+
A downsampling layer with an optional convolution.
|
158 |
+
:param channels: channels in the inputs and outputs.
|
159 |
+
:param use_conv: a bool determining if a convolution is applied.
|
160 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
161 |
+
downsampling occurs in the inner-two dimensions.
|
162 |
+
"""
|
163 |
+
|
164 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
165 |
+
super().__init__()
|
166 |
+
self.channels = channels
|
167 |
+
self.out_channels = out_channels or channels
|
168 |
+
self.use_conv = use_conv
|
169 |
+
self.dims = dims
|
170 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
171 |
+
if use_conv:
|
172 |
+
self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
173 |
+
else:
|
174 |
+
assert self.channels == self.out_channels
|
175 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
176 |
+
|
177 |
+
def forward(self, x):
|
178 |
+
assert x.shape[1] == self.channels
|
179 |
+
return self.op(x)
|
180 |
+
|
181 |
+
|
182 |
+
class ResBlock(TimestepBlock):
|
183 |
+
"""
|
184 |
+
A residual block that can optionally change the number of channels.
|
185 |
+
:param channels: the number of input channels.
|
186 |
+
:param emb_channels: the number of timestep embedding channels.
|
187 |
+
:param dropout: the rate of dropout.
|
188 |
+
:param out_channels: if specified, the number of out channels.
|
189 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
190 |
+
convolution instead of a smaller 1x1 convolution to change the
|
191 |
+
channels in the skip connection.
|
192 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
193 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
194 |
+
:param up: if True, use this block for upsampling.
|
195 |
+
:param down: if True, use this block for downsampling.
|
196 |
+
"""
|
197 |
+
|
198 |
+
def __init__(
|
199 |
+
self,
|
200 |
+
channels,
|
201 |
+
emb_channels,
|
202 |
+
dropout,
|
203 |
+
out_channels=None,
|
204 |
+
use_conv=False,
|
205 |
+
use_scale_shift_norm=False,
|
206 |
+
dims=2,
|
207 |
+
use_checkpoint=False,
|
208 |
+
up=False,
|
209 |
+
down=False,
|
210 |
+
):
|
211 |
+
super().__init__()
|
212 |
+
self.channels = channels
|
213 |
+
self.emb_channels = emb_channels
|
214 |
+
self.dropout = dropout
|
215 |
+
self.out_channels = out_channels or channels
|
216 |
+
self.use_conv = use_conv
|
217 |
+
self.use_checkpoint = use_checkpoint
|
218 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
219 |
+
|
220 |
+
self.in_layers = nn.Sequential(
|
221 |
+
normalization(channels),
|
222 |
+
nn.SiLU(),
|
223 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
224 |
+
)
|
225 |
+
|
226 |
+
self.updown = up or down
|
227 |
+
|
228 |
+
if up:
|
229 |
+
self.h_upd = Upsample(channels, False, dims)
|
230 |
+
self.x_upd = Upsample(channels, False, dims)
|
231 |
+
elif down:
|
232 |
+
self.h_upd = Downsample(channels, False, dims)
|
233 |
+
self.x_upd = Downsample(channels, False, dims)
|
234 |
+
else:
|
235 |
+
self.h_upd = self.x_upd = nn.Identity()
|
236 |
+
|
237 |
+
self.emb_layers = nn.Sequential(
|
238 |
+
nn.SiLU(),
|
239 |
+
linear(
|
240 |
+
emb_channels,
|
241 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
242 |
+
),
|
243 |
+
)
|
244 |
+
self.out_layers = nn.Sequential(
|
245 |
+
normalization(self.out_channels),
|
246 |
+
nn.SiLU(),
|
247 |
+
nn.Dropout(p=dropout),
|
248 |
+
zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
|
249 |
+
)
|
250 |
+
|
251 |
+
if self.out_channels == channels:
|
252 |
+
self.skip_connection = nn.Identity()
|
253 |
+
elif use_conv:
|
254 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
|
255 |
+
else:
|
256 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
257 |
+
|
258 |
+
def forward(self, x, emb):
|
259 |
+
"""
|
260 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
261 |
+
:param x: an [N x C x ...] Tensor of features.
|
262 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
263 |
+
:return: an [N x C x ...] Tensor of outputs.
|
264 |
+
"""
|
265 |
+
return checkpoint(self._forward, (x, emb), self.parameters(), self.use_checkpoint)
|
266 |
+
|
267 |
+
def _forward(self, x, emb):
|
268 |
+
if self.updown:
|
269 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
270 |
+
h = in_rest(x)
|
271 |
+
h = self.h_upd(h)
|
272 |
+
x = self.x_upd(x)
|
273 |
+
h = in_conv(h)
|
274 |
+
else:
|
275 |
+
h = self.in_layers(x)
|
276 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
277 |
+
while len(emb_out.shape) < len(h.shape):
|
278 |
+
emb_out = emb_out[..., None]
|
279 |
+
if self.use_scale_shift_norm:
|
280 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
281 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
282 |
+
h = out_norm(h) * (1 + scale) + shift
|
283 |
+
h = out_rest(h)
|
284 |
+
else:
|
285 |
+
h = h + emb_out
|
286 |
+
h = self.out_layers(h)
|
287 |
+
return self.skip_connection(x) + h
|
288 |
+
|
289 |
+
|
290 |
+
class AttentionBlock(nn.Module):
|
291 |
+
"""
|
292 |
+
An attention block that allows spatial positions to attend to each other.
|
293 |
+
Originally ported from here, but adapted to the N-d case.
|
294 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
295 |
+
"""
|
296 |
+
|
297 |
+
def __init__(
|
298 |
+
self,
|
299 |
+
channels,
|
300 |
+
num_heads=1,
|
301 |
+
num_head_channels=-1,
|
302 |
+
use_checkpoint=False,
|
303 |
+
use_new_attention_order=False,
|
304 |
+
):
|
305 |
+
super().__init__()
|
306 |
+
self.channels = channels
|
307 |
+
if num_head_channels == -1:
|
308 |
+
self.num_heads = num_heads
|
309 |
+
else:
|
310 |
+
assert (channels % num_head_channels == 0), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
311 |
+
self.num_heads = channels // num_head_channels
|
312 |
+
self.use_checkpoint = use_checkpoint
|
313 |
+
self.norm = normalization(channels)
|
314 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
315 |
+
if use_new_attention_order:
|
316 |
+
# split qkv before split heads
|
317 |
+
self.attention = QKVAttention(self.num_heads)
|
318 |
+
else:
|
319 |
+
# split heads before split qkv
|
320 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
321 |
+
|
322 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
323 |
+
|
324 |
+
def forward(self, x):
|
325 |
+
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
326 |
+
#return pt_checkpoint(self._forward, x) # pytorch
|
327 |
+
|
328 |
+
def _forward(self, x):
|
329 |
+
b, c, *spatial = x.shape
|
330 |
+
x = x.reshape(b, c, -1)
|
331 |
+
qkv = self.qkv(self.norm(x))
|
332 |
+
h = self.attention(qkv)
|
333 |
+
h = self.proj_out(h)
|
334 |
+
return (x + h).reshape(b, c, *spatial)
|
335 |
+
|
336 |
+
|
337 |
+
def count_flops_attn(model, _x, y):
|
338 |
+
"""
|
339 |
+
A counter for the `thop` package to count the operations in an
|
340 |
+
attention operation.
|
341 |
+
Meant to be used like:
|
342 |
+
macs, params = thop.profile(
|
343 |
+
model,
|
344 |
+
inputs=(inputs, timestamps),
|
345 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
346 |
+
)
|
347 |
+
"""
|
348 |
+
b, c, *spatial = y[0].shape
|
349 |
+
num_spatial = int(np.prod(spatial))
|
350 |
+
# We perform two matmuls with the same number of ops.
|
351 |
+
# The first computes the weight matrix, the second computes
|
352 |
+
# the combination of the value vectors.
|
353 |
+
matmul_ops = 2 * b * (num_spatial**2) * c
|
354 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
355 |
+
|
356 |
+
|
357 |
+
class QKVAttentionLegacy(nn.Module):
|
358 |
+
"""
|
359 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
360 |
+
"""
|
361 |
+
|
362 |
+
def __init__(self, n_heads):
|
363 |
+
super().__init__()
|
364 |
+
self.n_heads = n_heads
|
365 |
+
|
366 |
+
def forward(self, qkv):
|
367 |
+
"""
|
368 |
+
Apply QKV attention.
|
369 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
370 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
371 |
+
"""
|
372 |
+
bs, width, length = qkv.shape
|
373 |
+
assert width % (3 * self.n_heads) == 0
|
374 |
+
ch = width // (3 * self.n_heads)
|
375 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
376 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
377 |
+
weight = th.einsum("bct,bcs->bts", q * scale, k * scale) # More stable with f16 than dividing afterwards
|
378 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
379 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
380 |
+
return a.reshape(bs, -1, length)
|
381 |
+
|
382 |
+
@staticmethod
|
383 |
+
def count_flops(model, _x, y):
|
384 |
+
return count_flops_attn(model, _x, y)
|
385 |
+
|
386 |
+
|
387 |
+
class QKVAttention(nn.Module):
|
388 |
+
"""
|
389 |
+
A module which performs QKV attention and splits in a different order.
|
390 |
+
"""
|
391 |
+
|
392 |
+
def __init__(self, n_heads):
|
393 |
+
super().__init__()
|
394 |
+
self.n_heads = n_heads
|
395 |
+
|
396 |
+
def forward(self, qkv):
|
397 |
+
"""
|
398 |
+
Apply QKV attention.
|
399 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
400 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
401 |
+
"""
|
402 |
+
bs, width, length = qkv.shape
|
403 |
+
assert width % (3 * self.n_heads) == 0
|
404 |
+
ch = width // (3 * self.n_heads)
|
405 |
+
q, k, v = qkv.chunk(3, dim=1)
|
406 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
407 |
+
weight = th.einsum(
|
408 |
+
"bct,bcs->bts",
|
409 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
410 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
411 |
+
) # More stable with f16 than dividing afterwards
|
412 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
413 |
+
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
414 |
+
return a.reshape(bs, -1, length)
|
415 |
+
|
416 |
+
@staticmethod
|
417 |
+
def count_flops(model, _x, y):
|
418 |
+
return count_flops_attn(model, _x, y)
|
419 |
+
|
420 |
+
|
421 |
+
class Timestep(nn.Module):
|
422 |
+
|
423 |
+
def __init__(self, dim):
|
424 |
+
super().__init__()
|
425 |
+
self.dim = dim
|
426 |
+
|
427 |
+
def forward(self, t):
|
428 |
+
return timestep_embedding(t, self.dim)
|
429 |
+
|
430 |
+
|
431 |
+
class MultiViewUNetModel(nn.Module):
|
432 |
+
"""
|
433 |
+
The full multi-view UNet model with attention, timestep embedding and camera embedding.
|
434 |
+
:param in_channels: channels in the input Tensor.
|
435 |
+
:param model_channels: base channel count for the model.
|
436 |
+
:param out_channels: channels in the output Tensor.
|
437 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
438 |
+
:param attention_resolutions: a collection of downsample rates at which
|
439 |
+
attention will take place. May be a set, list, or tuple.
|
440 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
441 |
+
will be used.
|
442 |
+
:param dropout: the dropout probability.
|
443 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
444 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
445 |
+
downsampling.
|
446 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
447 |
+
:param num_classes: if specified (as an int), then this model will be
|
448 |
+
class-conditional with `num_classes` classes.
|
449 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
450 |
+
:param num_heads: the number of attention heads in each attention layer.
|
451 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
452 |
+
a fixed channel width per attention head.
|
453 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
454 |
+
of heads for upsampling. Deprecated.
|
455 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
456 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
457 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
458 |
+
increased efficiency.
|
459 |
+
:param camera_dim: dimensionality of camera input.
|
460 |
+
"""
|
461 |
+
|
462 |
+
def __init__(
|
463 |
+
self,
|
464 |
+
image_size,
|
465 |
+
in_channels,
|
466 |
+
model_channels,
|
467 |
+
out_channels,
|
468 |
+
num_res_blocks,
|
469 |
+
attention_resolutions,
|
470 |
+
dropout=0,
|
471 |
+
channel_mult=(1, 2, 4, 8),
|
472 |
+
conv_resample=True,
|
473 |
+
dims=2,
|
474 |
+
num_classes=None,
|
475 |
+
use_checkpoint=False,
|
476 |
+
num_heads=-1,
|
477 |
+
num_head_channels=-1,
|
478 |
+
num_heads_upsample=-1,
|
479 |
+
use_scale_shift_norm=False,
|
480 |
+
resblock_updown=False,
|
481 |
+
use_new_attention_order=False,
|
482 |
+
use_spatial_transformer=False, # custom transformer support
|
483 |
+
transformer_depth=1, # custom transformer support
|
484 |
+
context_dim=None, # custom transformer support
|
485 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
486 |
+
legacy=True,
|
487 |
+
disable_self_attentions=None,
|
488 |
+
num_attention_blocks=None,
|
489 |
+
disable_middle_self_attn=False,
|
490 |
+
use_linear_in_transformer=False,
|
491 |
+
adm_in_channels=None,
|
492 |
+
camera_dim=None,
|
493 |
+
):
|
494 |
+
super().__init__()
|
495 |
+
if use_spatial_transformer:
|
496 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
497 |
+
|
498 |
+
if context_dim is not None:
|
499 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
500 |
+
from omegaconf.listconfig import ListConfig
|
501 |
+
if type(context_dim) == ListConfig:
|
502 |
+
context_dim = list(context_dim)
|
503 |
+
|
504 |
+
if num_heads_upsample == -1:
|
505 |
+
num_heads_upsample = num_heads
|
506 |
+
|
507 |
+
if num_heads == -1:
|
508 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
509 |
+
|
510 |
+
if num_head_channels == -1:
|
511 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
512 |
+
|
513 |
+
self.image_size = image_size
|
514 |
+
self.in_channels = in_channels
|
515 |
+
self.model_channels = model_channels
|
516 |
+
self.out_channels = out_channels
|
517 |
+
if isinstance(num_res_blocks, int):
|
518 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
519 |
+
else:
|
520 |
+
if len(num_res_blocks) != len(channel_mult):
|
521 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
522 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
523 |
+
self.num_res_blocks = num_res_blocks
|
524 |
+
if disable_self_attentions is not None:
|
525 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
526 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
527 |
+
if num_attention_blocks is not None:
|
528 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
529 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
530 |
+
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
531 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
532 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
533 |
+
f"attention will still not be set.")
|
534 |
+
|
535 |
+
self.attention_resolutions = attention_resolutions
|
536 |
+
self.dropout = dropout
|
537 |
+
self.channel_mult = channel_mult
|
538 |
+
self.conv_resample = conv_resample
|
539 |
+
self.num_classes = num_classes
|
540 |
+
self.use_checkpoint = use_checkpoint
|
541 |
+
self.num_heads = num_heads
|
542 |
+
self.num_head_channels = num_head_channels
|
543 |
+
self.num_heads_upsample = num_heads_upsample
|
544 |
+
self.predict_codebook_ids = n_embed is not None
|
545 |
+
|
546 |
+
time_embed_dim = model_channels * 4
|
547 |
+
self.time_embed = nn.Sequential(
|
548 |
+
linear(model_channels, time_embed_dim),
|
549 |
+
nn.SiLU(),
|
550 |
+
linear(time_embed_dim, time_embed_dim),
|
551 |
+
)
|
552 |
+
|
553 |
+
if camera_dim is not None:
|
554 |
+
time_embed_dim = model_channels * 4
|
555 |
+
self.camera_embed = nn.Sequential(
|
556 |
+
linear(camera_dim, time_embed_dim),
|
557 |
+
nn.SiLU(),
|
558 |
+
linear(time_embed_dim, time_embed_dim),
|
559 |
+
)
|
560 |
+
|
561 |
+
if self.num_classes is not None:
|
562 |
+
if isinstance(self.num_classes, int):
|
563 |
+
self.label_emb = nn.Embedding(self.num_classes, time_embed_dim)
|
564 |
+
elif self.num_classes == "continuous":
|
565 |
+
# print("setting up linear c_adm embedding layer")
|
566 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
567 |
+
elif self.num_classes == "sequential":
|
568 |
+
assert adm_in_channels is not None
|
569 |
+
self.label_emb = nn.Sequential(nn.Sequential(
|
570 |
+
linear(adm_in_channels, time_embed_dim),
|
571 |
+
nn.SiLU(),
|
572 |
+
linear(time_embed_dim, time_embed_dim),
|
573 |
+
))
|
574 |
+
else:
|
575 |
+
raise ValueError()
|
576 |
+
|
577 |
+
self.input_blocks = nn.ModuleList([TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))])
|
578 |
+
self._feature_size = model_channels
|
579 |
+
input_block_chans = [model_channels]
|
580 |
+
ch = model_channels
|
581 |
+
ds = 1
|
582 |
+
for level, mult in enumerate(channel_mult):
|
583 |
+
for nr in range(self.num_res_blocks[level]):
|
584 |
+
layers: List[Any] = [ResBlock(
|
585 |
+
ch,
|
586 |
+
time_embed_dim,
|
587 |
+
dropout,
|
588 |
+
out_channels=mult * model_channels,
|
589 |
+
dims=dims,
|
590 |
+
use_checkpoint=use_checkpoint,
|
591 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
592 |
+
)]
|
593 |
+
ch = mult * model_channels
|
594 |
+
if ds in attention_resolutions:
|
595 |
+
if num_head_channels == -1:
|
596 |
+
dim_head = ch // num_heads
|
597 |
+
else:
|
598 |
+
num_heads = ch // num_head_channels
|
599 |
+
dim_head = num_head_channels
|
600 |
+
if legacy:
|
601 |
+
#num_heads = 1
|
602 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
603 |
+
if disable_self_attentions is not None:
|
604 |
+
disabled_sa = disable_self_attentions[level]
|
605 |
+
else:
|
606 |
+
disabled_sa = False
|
607 |
+
|
608 |
+
if num_attention_blocks is None or nr < num_attention_blocks[level]:
|
609 |
+
layers.append(AttentionBlock(
|
610 |
+
ch,
|
611 |
+
use_checkpoint=use_checkpoint,
|
612 |
+
num_heads=num_heads,
|
613 |
+
num_head_channels=dim_head,
|
614 |
+
use_new_attention_order=use_new_attention_order,
|
615 |
+
) if not use_spatial_transformer else SpatialTransformer3D(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, use_checkpoint=use_checkpoint))
|
616 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
617 |
+
self._feature_size += ch
|
618 |
+
input_block_chans.append(ch)
|
619 |
+
if level != len(channel_mult) - 1:
|
620 |
+
out_ch = ch
|
621 |
+
self.input_blocks.append(TimestepEmbedSequential(ResBlock(
|
622 |
+
ch,
|
623 |
+
time_embed_dim,
|
624 |
+
dropout,
|
625 |
+
out_channels=out_ch,
|
626 |
+
dims=dims,
|
627 |
+
use_checkpoint=use_checkpoint,
|
628 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
629 |
+
down=True,
|
630 |
+
) if resblock_updown else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)))
|
631 |
+
ch = out_ch
|
632 |
+
input_block_chans.append(ch)
|
633 |
+
ds *= 2
|
634 |
+
self._feature_size += ch
|
635 |
+
|
636 |
+
if num_head_channels == -1:
|
637 |
+
dim_head = ch // num_heads
|
638 |
+
else:
|
639 |
+
num_heads = ch // num_head_channels
|
640 |
+
dim_head = num_head_channels
|
641 |
+
if legacy:
|
642 |
+
#num_heads = 1
|
643 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
644 |
+
self.middle_block = TimestepEmbedSequential(
|
645 |
+
ResBlock(
|
646 |
+
ch,
|
647 |
+
time_embed_dim,
|
648 |
+
dropout,
|
649 |
+
dims=dims,
|
650 |
+
use_checkpoint=use_checkpoint,
|
651 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
652 |
+
),
|
653 |
+
AttentionBlock(
|
654 |
+
ch,
|
655 |
+
use_checkpoint=use_checkpoint,
|
656 |
+
num_heads=num_heads,
|
657 |
+
num_head_channels=dim_head,
|
658 |
+
use_new_attention_order=use_new_attention_order,
|
659 |
+
) if not use_spatial_transformer else SpatialTransformer3D( # always uses a self-attn
|
660 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, use_checkpoint=use_checkpoint),
|
661 |
+
ResBlock(
|
662 |
+
ch,
|
663 |
+
time_embed_dim,
|
664 |
+
dropout,
|
665 |
+
dims=dims,
|
666 |
+
use_checkpoint=use_checkpoint,
|
667 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
668 |
+
),
|
669 |
+
)
|
670 |
+
self._feature_size += ch
|
671 |
+
|
672 |
+
self.output_blocks = nn.ModuleList([])
|
673 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
674 |
+
for i in range(self.num_res_blocks[level] + 1):
|
675 |
+
ich = input_block_chans.pop()
|
676 |
+
layers = [ResBlock(
|
677 |
+
ch + ich,
|
678 |
+
time_embed_dim,
|
679 |
+
dropout,
|
680 |
+
out_channels=model_channels * mult,
|
681 |
+
dims=dims,
|
682 |
+
use_checkpoint=use_checkpoint,
|
683 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
684 |
+
)]
|
685 |
+
ch = model_channels * mult
|
686 |
+
if ds in attention_resolutions:
|
687 |
+
if num_head_channels == -1:
|
688 |
+
dim_head = ch // num_heads
|
689 |
+
else:
|
690 |
+
num_heads = ch // num_head_channels
|
691 |
+
dim_head = num_head_channels
|
692 |
+
if legacy:
|
693 |
+
#num_heads = 1
|
694 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
695 |
+
if disable_self_attentions is not None:
|
696 |
+
disabled_sa = disable_self_attentions[level]
|
697 |
+
else:
|
698 |
+
disabled_sa = False
|
699 |
+
|
700 |
+
if num_attention_blocks is None or i < num_attention_blocks[level]:
|
701 |
+
layers.append(AttentionBlock(
|
702 |
+
ch,
|
703 |
+
use_checkpoint=use_checkpoint,
|
704 |
+
num_heads=num_heads_upsample,
|
705 |
+
num_head_channels=dim_head,
|
706 |
+
use_new_attention_order=use_new_attention_order,
|
707 |
+
) if not use_spatial_transformer else SpatialTransformer3D(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, use_checkpoint=use_checkpoint))
|
708 |
+
if level and i == self.num_res_blocks[level]:
|
709 |
+
out_ch = ch
|
710 |
+
layers.append(ResBlock(
|
711 |
+
ch,
|
712 |
+
time_embed_dim,
|
713 |
+
dropout,
|
714 |
+
out_channels=out_ch,
|
715 |
+
dims=dims,
|
716 |
+
use_checkpoint=use_checkpoint,
|
717 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
718 |
+
up=True,
|
719 |
+
) if resblock_updown else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch))
|
720 |
+
ds //= 2
|
721 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
722 |
+
self._feature_size += ch
|
723 |
+
|
724 |
+
self.out = nn.Sequential(
|
725 |
+
normalization(ch),
|
726 |
+
nn.SiLU(),
|
727 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
728 |
+
)
|
729 |
+
if self.predict_codebook_ids:
|
730 |
+
self.id_predictor = nn.Sequential(
|
731 |
+
normalization(ch),
|
732 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
733 |
+
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
734 |
+
)
|
735 |
+
|
736 |
+
def forward(self, x, timesteps=None, context=None, y: Optional[Tensor] = None, camera=None, num_frames=1, **kwargs):
|
737 |
+
"""
|
738 |
+
Apply the model to an input batch.
|
739 |
+
:param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
|
740 |
+
:param timesteps: a 1-D batch of timesteps.
|
741 |
+
:param context: conditioning plugged in via crossattn
|
742 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
743 |
+
:param num_frames: a integer indicating number of frames for tensor reshaping.
|
744 |
+
:return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
|
745 |
+
"""
|
746 |
+
assert x.shape[0] % num_frames == 0, "[UNet] input batch size must be dividable by num_frames!"
|
747 |
+
assert (y is not None) == (self.num_classes is not None), "must specify y if and only if the model is class-conditional"
|
748 |
+
hs = []
|
749 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
750 |
+
|
751 |
+
emb = self.time_embed(t_emb)
|
752 |
+
|
753 |
+
if self.num_classes is not None:
|
754 |
+
assert y is not None
|
755 |
+
assert y.shape[0] == x.shape[0]
|
756 |
+
emb = emb + self.label_emb(y)
|
757 |
+
|
758 |
+
# Add camera embeddings
|
759 |
+
if camera is not None:
|
760 |
+
assert camera.shape[0] == emb.shape[0]
|
761 |
+
emb = emb + self.camera_embed(camera)
|
762 |
+
|
763 |
+
h = x
|
764 |
+
for module in self.input_blocks:
|
765 |
+
h = module(h, emb, context, num_frames=num_frames)
|
766 |
+
hs.append(h)
|
767 |
+
h = self.middle_block(h, emb, context, num_frames=num_frames)
|
768 |
+
for module in self.output_blocks:
|
769 |
+
h = th.cat([h, hs.pop()], dim=1)
|
770 |
+
h = module(h, emb, context, num_frames=num_frames)
|
771 |
+
h = h.type(x.dtype)
|
772 |
+
if self.predict_codebook_ids:
|
773 |
+
return self.id_predictor(h)
|
774 |
+
else:
|
775 |
+
return self.out(h)
|
mvdream/pipeline_mvdream.py
ADDED
@@ -0,0 +1,484 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import inspect
|
4 |
+
from typing import Callable, List, Optional, Union
|
5 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
6 |
+
from diffusers import AutoencoderKL, DiffusionPipeline
|
7 |
+
from diffusers.utils import (
|
8 |
+
deprecate,
|
9 |
+
is_accelerate_available,
|
10 |
+
is_accelerate_version,
|
11 |
+
logging,
|
12 |
+
)
|
13 |
+
from diffusers.configuration_utils import FrozenDict
|
14 |
+
from diffusers.schedulers import DDIMScheduler
|
15 |
+
try:
|
16 |
+
from diffusers import randn_tensor # old import # type: ignore
|
17 |
+
except ImportError:
|
18 |
+
from diffusers.utils.torch_utils import randn_tensor # new import # type: ignore
|
19 |
+
|
20 |
+
from .models import MultiViewUNetWrapperModel
|
21 |
+
from accelerate.utils import set_module_tensor_to_device
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
24 |
+
|
25 |
+
def create_camera_to_world_matrix(elevation, azimuth):
|
26 |
+
elevation = np.radians(elevation)
|
27 |
+
azimuth = np.radians(azimuth)
|
28 |
+
# Convert elevation and azimuth angles to Cartesian coordinates on a unit sphere
|
29 |
+
x = np.cos(elevation) * np.sin(azimuth)
|
30 |
+
y = np.sin(elevation)
|
31 |
+
z = np.cos(elevation) * np.cos(azimuth)
|
32 |
+
|
33 |
+
# Calculate camera position, target, and up vectors
|
34 |
+
camera_pos = np.array([x, y, z])
|
35 |
+
target = np.array([0, 0, 0])
|
36 |
+
up = np.array([0, 1, 0])
|
37 |
+
|
38 |
+
# Construct view matrix
|
39 |
+
forward = target - camera_pos
|
40 |
+
forward /= np.linalg.norm(forward)
|
41 |
+
right = np.cross(forward, up)
|
42 |
+
right /= np.linalg.norm(right)
|
43 |
+
new_up = np.cross(right, forward)
|
44 |
+
new_up /= np.linalg.norm(new_up)
|
45 |
+
cam2world = np.eye(4)
|
46 |
+
cam2world[:3, :3] = np.array([right, new_up, -forward]).T
|
47 |
+
cam2world[:3, 3] = camera_pos
|
48 |
+
return cam2world
|
49 |
+
|
50 |
+
|
51 |
+
def convert_opengl_to_blender(camera_matrix):
|
52 |
+
if isinstance(camera_matrix, np.ndarray):
|
53 |
+
# Construct transformation matrix to convert from OpenGL space to Blender space
|
54 |
+
flip_yz = np.array([[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
|
55 |
+
camera_matrix_blender = np.dot(flip_yz, camera_matrix)
|
56 |
+
else:
|
57 |
+
# Construct transformation matrix to convert from OpenGL space to Blender space
|
58 |
+
flip_yz = torch.tensor([[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
|
59 |
+
if camera_matrix.ndim == 3:
|
60 |
+
flip_yz = flip_yz.unsqueeze(0)
|
61 |
+
camera_matrix_blender = torch.matmul(flip_yz.to(camera_matrix), camera_matrix)
|
62 |
+
return camera_matrix_blender
|
63 |
+
|
64 |
+
|
65 |
+
def get_camera(num_frames, elevation=15, azimuth_start=0, azimuth_span=360, blender_coord=True):
|
66 |
+
angle_gap = azimuth_span / num_frames
|
67 |
+
cameras = []
|
68 |
+
for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
|
69 |
+
camera_matrix = create_camera_to_world_matrix(elevation, azimuth)
|
70 |
+
if blender_coord:
|
71 |
+
camera_matrix = convert_opengl_to_blender(camera_matrix)
|
72 |
+
cameras.append(camera_matrix.flatten())
|
73 |
+
return torch.tensor(np.stack(cameras, 0)).float()
|
74 |
+
|
75 |
+
|
76 |
+
class MVDreamStableDiffusionPipeline(DiffusionPipeline):
|
77 |
+
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
vae: AutoencoderKL,
|
81 |
+
unet: MultiViewUNetWrapperModel,
|
82 |
+
tokenizer: CLIPTokenizer,
|
83 |
+
text_encoder: CLIPTextModel,
|
84 |
+
scheduler: DDIMScheduler,
|
85 |
+
requires_safety_checker: bool = False,
|
86 |
+
):
|
87 |
+
super().__init__()
|
88 |
+
|
89 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: # type: ignore
|
90 |
+
deprecation_message = (f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
91 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " # type: ignore
|
92 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
93 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
94 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
95 |
+
" file")
|
96 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
97 |
+
new_config = dict(scheduler.config)
|
98 |
+
new_config["steps_offset"] = 1
|
99 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
100 |
+
|
101 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: # type: ignore
|
102 |
+
deprecation_message = (f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
103 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
104 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
105 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
106 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file")
|
107 |
+
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
108 |
+
new_config = dict(scheduler.config)
|
109 |
+
new_config["clip_sample"] = False
|
110 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
111 |
+
|
112 |
+
self.register_modules(
|
113 |
+
vae=vae,
|
114 |
+
unet=unet,
|
115 |
+
scheduler=scheduler,
|
116 |
+
tokenizer=tokenizer,
|
117 |
+
text_encoder=text_encoder,
|
118 |
+
)
|
119 |
+
self.vae_scale_factor = 2**(len(self.vae.config.block_out_channels) - 1)
|
120 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
121 |
+
|
122 |
+
def enable_vae_slicing(self):
|
123 |
+
r"""
|
124 |
+
Enable sliced VAE decoding.
|
125 |
+
|
126 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
127 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
128 |
+
"""
|
129 |
+
self.vae.enable_slicing()
|
130 |
+
|
131 |
+
def disable_vae_slicing(self):
|
132 |
+
r"""
|
133 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
134 |
+
computing decoding in one step.
|
135 |
+
"""
|
136 |
+
self.vae.disable_slicing()
|
137 |
+
|
138 |
+
def enable_vae_tiling(self):
|
139 |
+
r"""
|
140 |
+
Enable tiled VAE decoding.
|
141 |
+
|
142 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
|
143 |
+
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
|
144 |
+
"""
|
145 |
+
self.vae.enable_tiling()
|
146 |
+
|
147 |
+
def disable_vae_tiling(self):
|
148 |
+
r"""
|
149 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
|
150 |
+
computing decoding in one step.
|
151 |
+
"""
|
152 |
+
self.vae.disable_tiling()
|
153 |
+
|
154 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
155 |
+
r"""
|
156 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
157 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
158 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
159 |
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
160 |
+
`enable_model_cpu_offload`, but performance is lower.
|
161 |
+
"""
|
162 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
|
163 |
+
from accelerate import cpu_offload
|
164 |
+
else:
|
165 |
+
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
|
166 |
+
|
167 |
+
device = torch.device(f"cuda:{gpu_id}")
|
168 |
+
|
169 |
+
if self.device.type != "cpu":
|
170 |
+
self.to("cpu", silence_dtype_warnings=True)
|
171 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
172 |
+
|
173 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
174 |
+
cpu_offload(cpu_offloaded_model, device)
|
175 |
+
|
176 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
177 |
+
r"""
|
178 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
179 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
180 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
181 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
182 |
+
"""
|
183 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
184 |
+
from accelerate import cpu_offload_with_hook
|
185 |
+
else:
|
186 |
+
raise ImportError("`enable_model_offload` requires `accelerate v0.17.0` or higher.")
|
187 |
+
|
188 |
+
device = torch.device(f"cuda:{gpu_id}")
|
189 |
+
|
190 |
+
if self.device.type != "cpu":
|
191 |
+
self.to("cpu", silence_dtype_warnings=True)
|
192 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
193 |
+
|
194 |
+
hook = None
|
195 |
+
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
196 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
197 |
+
|
198 |
+
# We'll offload the last model manually.
|
199 |
+
self.final_offload_hook = hook
|
200 |
+
|
201 |
+
@property
|
202 |
+
def _execution_device(self):
|
203 |
+
r"""
|
204 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
205 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
206 |
+
hooks.
|
207 |
+
"""
|
208 |
+
if not hasattr(self.unet, "_hf_hook"):
|
209 |
+
return self.device
|
210 |
+
for module in self.unet.modules():
|
211 |
+
if (hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "execution_device") and module._hf_hook.execution_device is not None):
|
212 |
+
return torch.device(module._hf_hook.execution_device)
|
213 |
+
return self.device
|
214 |
+
|
215 |
+
def _encode_prompt(
|
216 |
+
self,
|
217 |
+
prompt,
|
218 |
+
device,
|
219 |
+
num_images_per_prompt,
|
220 |
+
do_classifier_free_guidance: bool,
|
221 |
+
negative_prompt=None,
|
222 |
+
):
|
223 |
+
r"""
|
224 |
+
Encodes the prompt into text encoder hidden states.
|
225 |
+
|
226 |
+
Args:
|
227 |
+
prompt (`str` or `List[str]`, *optional*):
|
228 |
+
prompt to be encoded
|
229 |
+
device: (`torch.device`):
|
230 |
+
torch device
|
231 |
+
num_images_per_prompt (`int`):
|
232 |
+
number of images that should be generated per prompt
|
233 |
+
do_classifier_free_guidance (`bool`):
|
234 |
+
whether to use classifier free guidance or not
|
235 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
236 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
237 |
+
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
238 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
239 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
240 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
241 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
242 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
243 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
244 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
245 |
+
argument.
|
246 |
+
"""
|
247 |
+
if prompt is not None and isinstance(prompt, str):
|
248 |
+
batch_size = 1
|
249 |
+
elif prompt is not None and isinstance(prompt, list):
|
250 |
+
batch_size = len(prompt)
|
251 |
+
else:
|
252 |
+
raise ValueError(f"`prompt` should be either a string or a list of strings, but got {type(prompt)}.")
|
253 |
+
|
254 |
+
text_inputs = self.tokenizer(
|
255 |
+
prompt,
|
256 |
+
padding="max_length",
|
257 |
+
max_length=self.tokenizer.model_max_length,
|
258 |
+
truncation=True,
|
259 |
+
return_tensors="pt",
|
260 |
+
)
|
261 |
+
text_input_ids = text_inputs.input_ids
|
262 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
263 |
+
|
264 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
265 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1])
|
266 |
+
logger.warning("The following part of your input was truncated because CLIP can only handle sequences up to"
|
267 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}")
|
268 |
+
|
269 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
270 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
271 |
+
else:
|
272 |
+
attention_mask = None
|
273 |
+
|
274 |
+
prompt_embeds = self.text_encoder(
|
275 |
+
text_input_ids.to(device),
|
276 |
+
attention_mask=attention_mask,
|
277 |
+
)
|
278 |
+
prompt_embeds = prompt_embeds[0]
|
279 |
+
|
280 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
281 |
+
|
282 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
283 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
284 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
285 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
286 |
+
|
287 |
+
# get unconditional embeddings for classifier free guidance
|
288 |
+
if do_classifier_free_guidance:
|
289 |
+
uncond_tokens: List[str]
|
290 |
+
if negative_prompt is None:
|
291 |
+
uncond_tokens = [""] * batch_size
|
292 |
+
elif type(prompt) is not type(negative_prompt):
|
293 |
+
raise TypeError(f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
294 |
+
f" {type(prompt)}.")
|
295 |
+
elif isinstance(negative_prompt, str):
|
296 |
+
uncond_tokens = [negative_prompt]
|
297 |
+
elif batch_size != len(negative_prompt):
|
298 |
+
raise ValueError(f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
299 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
300 |
+
" the batch size of `prompt`.")
|
301 |
+
else:
|
302 |
+
uncond_tokens = negative_prompt
|
303 |
+
|
304 |
+
max_length = prompt_embeds.shape[1]
|
305 |
+
uncond_input = self.tokenizer(
|
306 |
+
uncond_tokens,
|
307 |
+
padding="max_length",
|
308 |
+
max_length=max_length,
|
309 |
+
truncation=True,
|
310 |
+
return_tensors="pt",
|
311 |
+
)
|
312 |
+
|
313 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
314 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
315 |
+
else:
|
316 |
+
attention_mask = None
|
317 |
+
|
318 |
+
negative_prompt_embeds = self.text_encoder(
|
319 |
+
uncond_input.input_ids.to(device),
|
320 |
+
attention_mask=attention_mask,
|
321 |
+
)
|
322 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
323 |
+
|
324 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
325 |
+
seq_len = negative_prompt_embeds.shape[1]
|
326 |
+
|
327 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
328 |
+
|
329 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
330 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
331 |
+
|
332 |
+
# For classifier free guidance, we need to do two forward passes.
|
333 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
334 |
+
# to avoid doing two forward passes
|
335 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
336 |
+
|
337 |
+
return prompt_embeds
|
338 |
+
|
339 |
+
def decode_latents(self, latents):
|
340 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
341 |
+
image = self.vae.decode(latents).sample
|
342 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
343 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
344 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
345 |
+
return image
|
346 |
+
|
347 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
348 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
349 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
350 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
351 |
+
# and should be between [0, 1]
|
352 |
+
|
353 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
354 |
+
extra_step_kwargs = {}
|
355 |
+
if accepts_eta:
|
356 |
+
extra_step_kwargs["eta"] = eta
|
357 |
+
|
358 |
+
# check if the scheduler accepts generator
|
359 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
360 |
+
if accepts_generator:
|
361 |
+
extra_step_kwargs["generator"] = generator
|
362 |
+
return extra_step_kwargs
|
363 |
+
|
364 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
365 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
366 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
367 |
+
raise ValueError(f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
368 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators.")
|
369 |
+
|
370 |
+
if latents is None:
|
371 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
372 |
+
else:
|
373 |
+
latents = latents.to(device)
|
374 |
+
|
375 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
376 |
+
latents = latents * self.scheduler.init_noise_sigma
|
377 |
+
return latents
|
378 |
+
|
379 |
+
@torch.no_grad()
|
380 |
+
def __call__(
|
381 |
+
self,
|
382 |
+
prompt: str = "a car",
|
383 |
+
height: int = 256,
|
384 |
+
width: int = 256,
|
385 |
+
num_inference_steps: int = 50,
|
386 |
+
guidance_scale: float = 7.0,
|
387 |
+
negative_prompt: str = "bad quality",
|
388 |
+
num_images_per_prompt: int = 1,
|
389 |
+
eta: float = 0.0,
|
390 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
391 |
+
output_type: Optional[str] = "image",
|
392 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
393 |
+
callback_steps: int = 1,
|
394 |
+
batch_size: int = 4,
|
395 |
+
device = torch.device("cuda:0"),
|
396 |
+
):
|
397 |
+
self.unet = self.unet.to(device=device)
|
398 |
+
self.vae = self.vae.to(device=device)
|
399 |
+
|
400 |
+
self.text_encoder = self.text_encoder.to(device=device)
|
401 |
+
|
402 |
+
|
403 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
404 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
405 |
+
# corresponds to doing no classifier free guidance.
|
406 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
407 |
+
|
408 |
+
# Prepare timesteps
|
409 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
410 |
+
timesteps = self.scheduler.timesteps
|
411 |
+
|
412 |
+
_prompt_embeds: torch.Tensor = self._encode_prompt(
|
413 |
+
prompt=prompt,
|
414 |
+
device=device,
|
415 |
+
num_images_per_prompt=num_images_per_prompt,
|
416 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
417 |
+
negative_prompt=negative_prompt,
|
418 |
+
) # type: ignore
|
419 |
+
prompt_embeds_neg, prompt_embeds_pos = _prompt_embeds.chunk(2)
|
420 |
+
|
421 |
+
# Prepare latent variables
|
422 |
+
latents: torch.Tensor = self.prepare_latents(
|
423 |
+
batch_size * num_images_per_prompt,
|
424 |
+
4,
|
425 |
+
height,
|
426 |
+
width,
|
427 |
+
prompt_embeds_pos.dtype,
|
428 |
+
device,
|
429 |
+
generator,
|
430 |
+
None,
|
431 |
+
)
|
432 |
+
|
433 |
+
camera = get_camera(batch_size).to(dtype=latents.dtype, device=device)
|
434 |
+
|
435 |
+
# Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
436 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
437 |
+
|
438 |
+
# Denoising loop
|
439 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
440 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
441 |
+
for i, t in enumerate(timesteps):
|
442 |
+
# expand the latents if we are doing classifier free guidance
|
443 |
+
multiplier = 2 if do_classifier_free_guidance else 1
|
444 |
+
latent_model_input = torch.cat([latents] * multiplier)
|
445 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
446 |
+
|
447 |
+
# predict the noise residual
|
448 |
+
noise_pred = self.unet.forward(
|
449 |
+
x=latent_model_input,
|
450 |
+
timesteps=torch.tensor([t] * 4 * multiplier, dtype=latent_model_input.dtype, device=device),
|
451 |
+
context=torch.cat([prompt_embeds_neg] * 4 + [prompt_embeds_pos] * 4),
|
452 |
+
num_frames=4,
|
453 |
+
camera=torch.cat([camera] * multiplier),
|
454 |
+
)
|
455 |
+
|
456 |
+
# perform guidance
|
457 |
+
if do_classifier_free_guidance:
|
458 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
459 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
460 |
+
|
461 |
+
# compute the previous noisy sample x_t -> x_t-1
|
462 |
+
# latents = self.scheduler.step(noise_pred.to(dtype=torch.float32), t, latents.to(dtype=torch.float32)).prev_sample.to(prompt_embeds.dtype)
|
463 |
+
latents: torch.Tensor = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
464 |
+
|
465 |
+
# call the callback, if provided
|
466 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
467 |
+
progress_bar.update()
|
468 |
+
if callback is not None and i % callback_steps == 0:
|
469 |
+
callback(i, t, latents) # type: ignore
|
470 |
+
|
471 |
+
# Post-processing
|
472 |
+
if output_type == "latent":
|
473 |
+
image = latents
|
474 |
+
elif output_type == "pil":
|
475 |
+
image = self.decode_latents(latents)
|
476 |
+
image = self.numpy_to_pil(image)
|
477 |
+
else:
|
478 |
+
image = self.decode_latents(latents)
|
479 |
+
|
480 |
+
# Offload last model to CPU
|
481 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
482 |
+
self.final_offload_hook.offload()
|
483 |
+
|
484 |
+
return image
|
mvdream/util.py
ADDED
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adopted from
|
2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
3 |
+
# and
|
4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
+
# and
|
6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
7 |
+
#
|
8 |
+
# thanks!
|
9 |
+
|
10 |
+
import math
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import numpy as np
|
14 |
+
import importlib
|
15 |
+
from einops import repeat
|
16 |
+
from typing import Any
|
17 |
+
|
18 |
+
|
19 |
+
def instantiate_from_config(config):
|
20 |
+
if not "target" in config:
|
21 |
+
if config == '__is_first_stage__':
|
22 |
+
return None
|
23 |
+
elif config == "__is_unconditional__":
|
24 |
+
return None
|
25 |
+
raise KeyError("Expected key `target` to instantiate.")
|
26 |
+
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
27 |
+
|
28 |
+
|
29 |
+
def get_obj_from_str(string, reload=False):
|
30 |
+
module, cls = string.rsplit(".", 1)
|
31 |
+
if reload:
|
32 |
+
module_imp = importlib.import_module(module)
|
33 |
+
importlib.reload(module_imp)
|
34 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
35 |
+
|
36 |
+
|
37 |
+
def make_beta_schedule(schedule,
|
38 |
+
n_timestep,
|
39 |
+
linear_start=1e-4,
|
40 |
+
linear_end=2e-2,
|
41 |
+
cosine_s=8e-3):
|
42 |
+
if schedule == "linear":
|
43 |
+
betas = (torch.linspace(linear_start**0.5,
|
44 |
+
linear_end**0.5,
|
45 |
+
n_timestep,
|
46 |
+
dtype=torch.float64)**2)
|
47 |
+
|
48 |
+
elif schedule == "cosine":
|
49 |
+
timesteps = (
|
50 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep +
|
51 |
+
cosine_s)
|
52 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
53 |
+
alphas = torch.cos(alphas).pow(2)
|
54 |
+
alphas = alphas / alphas[0]
|
55 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
56 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
57 |
+
|
58 |
+
elif schedule == "sqrt_linear":
|
59 |
+
betas = torch.linspace(linear_start,
|
60 |
+
linear_end,
|
61 |
+
n_timestep,
|
62 |
+
dtype=torch.float64)
|
63 |
+
elif schedule == "sqrt":
|
64 |
+
betas = torch.linspace(linear_start,
|
65 |
+
linear_end,
|
66 |
+
n_timestep,
|
67 |
+
dtype=torch.float64)**0.5
|
68 |
+
else:
|
69 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
70 |
+
return betas.numpy() # type: ignore
|
71 |
+
|
72 |
+
|
73 |
+
def make_ddim_timesteps(ddim_discr_method,
|
74 |
+
num_ddim_timesteps,
|
75 |
+
num_ddpm_timesteps,
|
76 |
+
verbose=True):
|
77 |
+
if ddim_discr_method == 'uniform':
|
78 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
79 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
80 |
+
elif ddim_discr_method == 'quad':
|
81 |
+
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8),
|
82 |
+
num_ddim_timesteps))**2).astype(int)
|
83 |
+
else:
|
84 |
+
raise NotImplementedError(
|
85 |
+
f'There is no ddim discretization method called "{ddim_discr_method}"'
|
86 |
+
)
|
87 |
+
|
88 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
89 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
90 |
+
steps_out = ddim_timesteps + 1
|
91 |
+
if verbose:
|
92 |
+
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
93 |
+
return steps_out
|
94 |
+
|
95 |
+
|
96 |
+
def make_ddim_sampling_parameters(alphacums,
|
97 |
+
ddim_timesteps,
|
98 |
+
eta,
|
99 |
+
verbose=True):
|
100 |
+
# select alphas for computing the variance schedule
|
101 |
+
alphas = alphacums[ddim_timesteps]
|
102 |
+
alphas_prev = np.asarray([alphacums[0]] +
|
103 |
+
alphacums[ddim_timesteps[:-1]].tolist())
|
104 |
+
|
105 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
106 |
+
sigmas = eta * np.sqrt(
|
107 |
+
(1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
108 |
+
if verbose:
|
109 |
+
print(
|
110 |
+
f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}'
|
111 |
+
)
|
112 |
+
print(
|
113 |
+
f'For the chosen value of eta, which is {eta}, '
|
114 |
+
f'this results in the following sigma_t schedule for ddim sampler {sigmas}'
|
115 |
+
)
|
116 |
+
return sigmas, alphas, alphas_prev
|
117 |
+
|
118 |
+
|
119 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
120 |
+
"""
|
121 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
122 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
123 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
124 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
125 |
+
produces the cumulative product of (1-beta) up to that
|
126 |
+
part of the diffusion process.
|
127 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
128 |
+
prevent singularities.
|
129 |
+
"""
|
130 |
+
betas = []
|
131 |
+
for i in range(num_diffusion_timesteps):
|
132 |
+
t1 = i / num_diffusion_timesteps
|
133 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
134 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
135 |
+
return np.array(betas)
|
136 |
+
|
137 |
+
|
138 |
+
def extract_into_tensor(a, t, x_shape):
|
139 |
+
b, *_ = t.shape
|
140 |
+
out = a.gather(-1, t)
|
141 |
+
return out.reshape(b, *((1, ) * (len(x_shape) - 1)))
|
142 |
+
|
143 |
+
|
144 |
+
def checkpoint(func, inputs, params, flag):
|
145 |
+
"""
|
146 |
+
Evaluate a function without caching intermediate activations, allowing for
|
147 |
+
reduced memory at the expense of extra compute in the backward pass.
|
148 |
+
:param func: the function to evaluate.
|
149 |
+
:param inputs: the argument sequence to pass to `func`.
|
150 |
+
:param params: a sequence of parameters `func` depends on but does not
|
151 |
+
explicitly take as arguments.
|
152 |
+
:param flag: if False, disable gradient checkpointing.
|
153 |
+
"""
|
154 |
+
if flag:
|
155 |
+
args = tuple(inputs) + tuple(params)
|
156 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
157 |
+
else:
|
158 |
+
return func(*inputs)
|
159 |
+
|
160 |
+
|
161 |
+
class CheckpointFunction(torch.autograd.Function):
|
162 |
+
|
163 |
+
@staticmethod
|
164 |
+
def forward(ctx, run_function, length, *args):
|
165 |
+
ctx.run_function = run_function
|
166 |
+
ctx.input_tensors = list(args[:length])
|
167 |
+
ctx.input_params = list(args[length:])
|
168 |
+
|
169 |
+
with torch.no_grad():
|
170 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
171 |
+
return output_tensors
|
172 |
+
|
173 |
+
@staticmethod
|
174 |
+
def backward(ctx, *output_grads):
|
175 |
+
ctx.input_tensors = [
|
176 |
+
x.detach().requires_grad_(True) for x in ctx.input_tensors
|
177 |
+
]
|
178 |
+
with torch.enable_grad():
|
179 |
+
# Fixes a bug where the first op in run_function modifies the
|
180 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
181 |
+
# Tensors.
|
182 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
183 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
184 |
+
input_grads = torch.autograd.grad(
|
185 |
+
output_tensors,
|
186 |
+
ctx.input_tensors + ctx.input_params,
|
187 |
+
output_grads,
|
188 |
+
allow_unused=True,
|
189 |
+
)
|
190 |
+
del ctx.input_tensors
|
191 |
+
del ctx.input_params
|
192 |
+
del output_tensors
|
193 |
+
return (None, None) + input_grads
|
194 |
+
|
195 |
+
|
196 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
197 |
+
"""
|
198 |
+
Create sinusoidal timestep embeddings.
|
199 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
200 |
+
These may be fractional.
|
201 |
+
:param dim: the dimension of the output.
|
202 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
203 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
204 |
+
"""
|
205 |
+
if not repeat_only:
|
206 |
+
half = dim // 2
|
207 |
+
freqs = torch.exp(
|
208 |
+
-math.log(max_period) *
|
209 |
+
torch.arange(start=0, end=half, dtype=torch.float32) /
|
210 |
+
half).to(device=timesteps.device)
|
211 |
+
args = timesteps[:, None] * freqs[None]
|
212 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
213 |
+
if dim % 2:
|
214 |
+
embedding = torch.cat(
|
215 |
+
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
216 |
+
else:
|
217 |
+
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
218 |
+
# import pdb; pdb.set_trace()
|
219 |
+
return embedding
|
220 |
+
|
221 |
+
|
222 |
+
def zero_module(module):
|
223 |
+
"""
|
224 |
+
Zero out the parameters of a module and return it.
|
225 |
+
"""
|
226 |
+
for p in module.parameters():
|
227 |
+
p.detach().zero_()
|
228 |
+
return module
|
229 |
+
|
230 |
+
|
231 |
+
def scale_module(module, scale):
|
232 |
+
"""
|
233 |
+
Scale the parameters of a module and return it.
|
234 |
+
"""
|
235 |
+
for p in module.parameters():
|
236 |
+
p.detach().mul_(scale)
|
237 |
+
return module
|
238 |
+
|
239 |
+
|
240 |
+
def mean_flat(tensor):
|
241 |
+
"""
|
242 |
+
Take the mean over all non-batch dimensions.
|
243 |
+
"""
|
244 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
245 |
+
|
246 |
+
|
247 |
+
def normalization(channels):
|
248 |
+
"""
|
249 |
+
Make a standard normalization layer.
|
250 |
+
:param channels: number of input channels.
|
251 |
+
:return: an nn.Module for normalization.
|
252 |
+
"""
|
253 |
+
return GroupNorm32(32, channels)
|
254 |
+
|
255 |
+
|
256 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
257 |
+
class SiLU(nn.Module):
|
258 |
+
|
259 |
+
def forward(self, x):
|
260 |
+
return x * torch.sigmoid(x)
|
261 |
+
|
262 |
+
|
263 |
+
class GroupNorm32(nn.GroupNorm):
|
264 |
+
|
265 |
+
def forward(self, x):
|
266 |
+
return super().forward(x)
|
267 |
+
|
268 |
+
|
269 |
+
def conv_nd(dims, *args, **kwargs):
|
270 |
+
"""
|
271 |
+
Create a 1D, 2D, or 3D convolution module.
|
272 |
+
"""
|
273 |
+
if dims == 1:
|
274 |
+
return nn.Conv1d(*args, **kwargs)
|
275 |
+
elif dims == 2:
|
276 |
+
return nn.Conv2d(*args, **kwargs)
|
277 |
+
elif dims == 3:
|
278 |
+
return nn.Conv3d(*args, **kwargs)
|
279 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
280 |
+
|
281 |
+
|
282 |
+
def linear(*args, **kwargs):
|
283 |
+
"""
|
284 |
+
Create a linear module.
|
285 |
+
"""
|
286 |
+
return nn.Linear(*args, **kwargs)
|
287 |
+
|
288 |
+
|
289 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
290 |
+
"""
|
291 |
+
Create a 1D, 2D, or 3D average pooling module.
|
292 |
+
"""
|
293 |
+
if dims == 1:
|
294 |
+
return nn.AvgPool1d(*args, **kwargs)
|
295 |
+
elif dims == 2:
|
296 |
+
return nn.AvgPool2d(*args, **kwargs)
|
297 |
+
elif dims == 3:
|
298 |
+
return nn.AvgPool3d(*args, **kwargs)
|
299 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
300 |
+
|
301 |
+
|
302 |
+
class HybridConditioner(nn.Module):
|
303 |
+
|
304 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
305 |
+
super().__init__()
|
306 |
+
self.concat_conditioner: Any = instantiate_from_config(c_concat_config)
|
307 |
+
self.crossattn_conditioner: Any = instantiate_from_config(
|
308 |
+
c_crossattn_config)
|
309 |
+
|
310 |
+
def forward(self, c_concat, c_crossattn):
|
311 |
+
c_concat = self.concat_conditioner(c_concat)
|
312 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
313 |
+
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
314 |
+
|
315 |
+
|
316 |
+
def noise_like(shape, device, repeat=False):
|
317 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
|
318 |
+
shape[0], *((1, ) * (len(shape) - 1)))
|
319 |
+
noise = lambda: torch.randn(shape, device=device)
|
320 |
+
return repeat_noise() if repeat else noise()
|