kasperchen commited on
Commit
026a805
·
1 Parent(s): dd0a0e5

Initial commit

Browse files
a2c-PandaPickAndPlace-v3.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c1d2848b7e0c2bcc3e56fee24e17db291f6b628c96c6171254c80e387605199c
3
  size 123272
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f82978b86576b099eac09269fb58368e28e80e01b5e33f097d0b2e5a8f73c68a
3
  size 123272
a2c-PandaPickAndPlace-v3/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb5c03425f0>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7fb5c033ab40>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0e86b41bd0>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f0e86b484c0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb5c03425f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb5c033ab40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692676443994681366, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYUIIQA0hUr5QFFi8WENZv4UsFj/IyQE+Jt0mv6y8dz97yAE+8cvOPjoxMT88yQE+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEa6jPzUbM79zgVk/5H+SP+3qpj7OQ4q/wGlWv0jCZb/OQ4q/n7HKv9aFg7/mlj6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAD9Sos/yUzXPenVdL97GdU+XaOov1o5LT1fR9m+YUIIQA0hUr5QFFi8Se2+QKsGs0CrD5vA+CVcQItv4b4B4iPARlE4P8aQA0H/G6I/zhbmvpXL170QdJA/XnnwPtp6bT8sHEU/MKY3v1hDWb+FLBY/yMkBPhVj+rs/mpO8Av6ivNq2Kz0J2E68kIx5PXLLCjtwLbq8cvILvGhkpL76Gpw96n5jPrE1TsCRGVW/VpDLv5imN78m3Sa/rLx3P3vIAT4fg/e7my2SvBczmrwOkis9OJFPvNUvej1IMok6373GvDG6A7yanrI/xrBivu6f2D7M0KU9LEfev9qa2z4zHsk/8cvOPjoxMT88yQE+aun5uxxw60DEzUbAq0gqPVvKS7zVL3o9nTGJOta9xryQ+wq8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 2.1290514 -0.2052042 -0.01318844]\n [-0.84868383 0.5866168 0.1267463 ]\n [-0.65181196 0.96772265 0.12674133]\n [ 0.4038997 0.6921574 0.12674421]]", "desired_goal": "[[ 1.2787496 -0.6996339 0.8496315 ]\n [ 1.1445279 0.3260111 -1.0801942 ]\n [-0.8375511 -0.89749575 -1.0801942 ]\n [-1.5835456 -1.0275218 -0.74449 ]]", "observation": "[[ 1.08822596e+00 1.05126925e-01 -9.56389010e-01 4.16210026e-01\n -1.31748545e+00 4.22910228e-02 -4.24372643e-01 2.12905145e+00\n -2.05204204e-01 -1.31884366e-02 5.96646547e+00 5.59456396e+00\n -4.84566259e+00 3.43981743e+00 -4.40304130e-01 -2.56066918e+00\n 7.19990134e-01 8.22284508e+00 1.26647937e+00]\n [-4.49392736e-01 -1.05368771e-01 1.12854195e+00 4.69675958e-01\n 9.27655816e-01 7.69961119e-01 -7.17379570e-01 -8.48683834e-01\n 5.86616814e-01 1.26746297e-01 -7.64120603e-03 -1.80178862e-02\n -1.98965110e-02 4.19224277e-02 -1.26247490e-02 6.09250665e-02\n 2.11783918e-03 -2.27267444e-02 -8.54169019e-03]\n [-3.21078539e-01 7.62233287e-02 2.22163826e-01 -3.22202706e+00\n -8.32421362e-01 -1.59034228e+00 -7.17385769e-01 -6.51811957e-01\n 9.67722654e-01 1.26741335e-01 -7.55347265e-03 -1.78440120e-02\n -1.88231897e-02 4.18873355e-02 -1.26689002e-02 6.10807724e-02\n 1.04672555e-03 -2.42604595e-02 -8.03999696e-03]\n [ 1.39546514e+00 -2.21377462e-01 4.23095167e-01 8.09646547e-02\n -1.73654699e+00 4.28915799e-01 1.57123411e+00 4.03899699e-01\n 6.92157388e-01 1.26744211e-01 -7.62670208e-03 7.35743523e+00\n -3.10630894e+00 4.15732078e-02 -1.24383820e-02 6.10807724e-02\n 1.04670564e-03 -2.42604427e-02 -8.48282874e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAzllMvZn0Sj0K16M8A+cCPkE8DD0K16M8QAQXviajqz0K16M8v5fHvVWp7L0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlwyWPcTu3r1cGOE8pfWmPb62hj0K16M8st47PWiSDT5YCew9jVarvJupqTwK16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAzllMvZn0Sj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAAPnAj5BPAw9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABABBe+JqOrPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAv5fHvVWp7L0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.04989033 0.04954967 0.02 ]\n [ 0.12783436 0.03423715 0.02 ]\n [-0.14747715 0.08380727 0.02 ]\n [-0.0974574 -0.11555735 0.02 ]]", "desired_goal": "[[ 0.0732662 -0.10885385 0.02747744]\n [ 0.08152322 0.06577824 0.02 ]\n [ 0.04586668 0.13825381 0.1152522 ]\n [-0.02091529 0.02071076 0.02 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -4.9890332e-02\n 4.9549673e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2783436e-01\n 3.4237150e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4747715e-01\n 8.3807275e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.7457401e-02\n -1.1555735e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CkC9kjgQ6IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDIOH31zydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDBFq8DjjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDB7aRISUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDM9x6v7ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDX1NHpbEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDQ1Muez2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDRnezlcRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDcnAZbY9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDndL6DXfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDgWGATZhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDg2q1gIAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDrkcKgIydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkD1aZ6UqydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDuLG7z06dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDuM67ulXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkD42zOX3QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEC1+AmRedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkD7j+zdDZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkD84Yzi0fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEJcYht+DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEUT2nKnvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkENN6PbPAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkENNITXardX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEXyK3uuzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEhoicG1QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEabMHKOldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEapSBK+SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEljjin50dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEwxP420idX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEphhhH9WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEpd6sySFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkE0iJGe+VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkE/pKaodddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkE4t2ki2VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkE5scZLqVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFEcE/0NCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFO2mHgxbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFHu0kWykdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFIKW9lErdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFTa24NI9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFeFeOXE7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFXKe05U+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFXbvoePrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFijhDPWydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFs1uaWondX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CkFtMN2C/XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFl9q1w5vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFm1toBaLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFxrnLaEjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkF9QDeTFEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkF2B6By0bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkF2UBfa6CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGAtHhCMQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGLfag261dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGEEM1CPZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGE5o4+8odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGPh99c8ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGaL9/BnBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGSwlSjxkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGTFOoHcDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGeKKgqVhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGp0wJw85dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGihAWznidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGjKCYkVvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGuvg3tKJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkG6SbYsd1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGyv863iJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGyxmK64EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkG92OZLIxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHIAjQiRodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHAgt4A0bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHAouPFNtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHL2Yv38GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHXHzH0btdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHPw0oBq9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHQ6xoqTbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHc4XfqHHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHoJPykKvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHgocaOxTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHhOjynUEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHs4YixFBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkH5FJ6IFedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHxndoFmndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHyY3vQWvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkH91yvLX+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIIKPXCj2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIAtP557gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIBVbiZOSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIM7sOXmedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIYKBun/DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIQygf2bodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIRXBguyvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIccyeqaPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkImmL9/BndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIfFOfukUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIfbuDzy0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIqYBV+7UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkI2Up/gBLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIu5j6N2ldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL21sMi9hbmFjb25kYTMvZW52cy9odWdnaW5nZmFjZS1hMmMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9tbDIvYW5hY29uZGEzL2VudnMvaHVnZ2luZ2ZhY2UtYTJjL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.0-79-generic-x86_64-with-glibc2.31 # 86~20.04.2-Ubuntu SMP Mon Jul 17 23:27:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.0", "OpenAI Gym": "0.26.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0e86b41bd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0e86b484c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692676443994681366, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYUIIQA0hUr5QFFi8WENZv4UsFj/IyQE+Jt0mv6y8dz97yAE+8cvOPjoxMT88yQE+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEa6jPzUbM79zgVk/5H+SP+3qpj7OQ4q/wGlWv0jCZb/OQ4q/n7HKv9aFg7/mlj6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAD9Sos/yUzXPenVdL97GdU+XaOov1o5LT1fR9m+YUIIQA0hUr5QFFi8Se2+QKsGs0CrD5vA+CVcQItv4b4B4iPARlE4P8aQA0H/G6I/zhbmvpXL170QdJA/XnnwPtp6bT8sHEU/MKY3v1hDWb+FLBY/yMkBPhVj+rs/mpO8Av6ivNq2Kz0J2E68kIx5PXLLCjtwLbq8cvILvGhkpL76Gpw96n5jPrE1TsCRGVW/VpDLv5imN78m3Sa/rLx3P3vIAT4fg/e7my2SvBczmrwOkis9OJFPvNUvej1IMok6373GvDG6A7yanrI/xrBivu6f2D7M0KU9LEfev9qa2z4zHsk/8cvOPjoxMT88yQE+aun5uxxw60DEzUbAq0gqPVvKS7zVL3o9nTGJOta9xryQ+wq8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 2.1290514 -0.2052042 -0.01318844]\n [-0.84868383 0.5866168 0.1267463 ]\n [-0.65181196 0.96772265 0.12674133]\n [ 0.4038997 0.6921574 0.12674421]]", "desired_goal": "[[ 1.2787496 -0.6996339 0.8496315 ]\n [ 1.1445279 0.3260111 -1.0801942 ]\n [-0.8375511 -0.89749575 -1.0801942 ]\n [-1.5835456 -1.0275218 -0.74449 ]]", "observation": "[[ 1.08822596e+00 1.05126925e-01 -9.56389010e-01 4.16210026e-01\n -1.31748545e+00 4.22910228e-02 -4.24372643e-01 2.12905145e+00\n -2.05204204e-01 -1.31884366e-02 5.96646547e+00 5.59456396e+00\n -4.84566259e+00 3.43981743e+00 -4.40304130e-01 -2.56066918e+00\n 7.19990134e-01 8.22284508e+00 1.26647937e+00]\n [-4.49392736e-01 -1.05368771e-01 1.12854195e+00 4.69675958e-01\n 9.27655816e-01 7.69961119e-01 -7.17379570e-01 -8.48683834e-01\n 5.86616814e-01 1.26746297e-01 -7.64120603e-03 -1.80178862e-02\n -1.98965110e-02 4.19224277e-02 -1.26247490e-02 6.09250665e-02\n 2.11783918e-03 -2.27267444e-02 -8.54169019e-03]\n [-3.21078539e-01 7.62233287e-02 2.22163826e-01 -3.22202706e+00\n -8.32421362e-01 -1.59034228e+00 -7.17385769e-01 -6.51811957e-01\n 9.67722654e-01 1.26741335e-01 -7.55347265e-03 -1.78440120e-02\n -1.88231897e-02 4.18873355e-02 -1.26689002e-02 6.10807724e-02\n 1.04672555e-03 -2.42604595e-02 -8.03999696e-03]\n [ 1.39546514e+00 -2.21377462e-01 4.23095167e-01 8.09646547e-02\n -1.73654699e+00 4.28915799e-01 1.57123411e+00 4.03899699e-01\n 6.92157388e-01 1.26744211e-01 -7.62670208e-03 7.35743523e+00\n -3.10630894e+00 4.15732078e-02 -1.24383820e-02 6.10807724e-02\n 1.04670564e-03 -2.42604427e-02 -8.48282874e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAzllMvZn0Sj0K16M8A+cCPkE8DD0K16M8QAQXviajqz0K16M8v5fHvVWp7L0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlwyWPcTu3r1cGOE8pfWmPb62hj0K16M8st47PWiSDT5YCew9jVarvJupqTwK16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAzllMvZn0Sj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAAPnAj5BPAw9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABABBe+JqOrPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAv5fHvVWp7L0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.04989033 0.04954967 0.02 ]\n [ 0.12783436 0.03423715 0.02 ]\n [-0.14747715 0.08380727 0.02 ]\n [-0.0974574 -0.11555735 0.02 ]]", "desired_goal": "[[ 0.0732662 -0.10885385 0.02747744]\n [ 0.08152322 0.06577824 0.02 ]\n [ 0.04586668 0.13825381 0.1152522 ]\n [-0.02091529 0.02071076 0.02 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -4.9890332e-02\n 4.9549673e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2783436e-01\n 3.4237150e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4747715e-01\n 8.3807275e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.7457401e-02\n -1.1555735e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CkC9kjgQ6IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDIOH31zydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDBFq8DjjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDB7aRISUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDM9x6v7ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDX1NHpbEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDQ1Muez2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDRnezlcRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDcnAZbY9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDndL6DXfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDgWGATZhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDg2q1gIAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDrkcKgIydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkD1aZ6UqydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDuLG7z06dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkDuM67ulXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkD42zOX3QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEC1+AmRedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkD7j+zdDZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkD84Yzi0fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEJcYht+DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEUT2nKnvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkENN6PbPAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkENNITXardX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEXyK3uuzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEhoicG1QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEabMHKOldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEapSBK+SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEljjin50dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEwxP420idX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEphhhH9WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkEpd6sySFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkE0iJGe+VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkE/pKaodddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkE4t2ki2VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkE5scZLqVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFEcE/0NCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFO2mHgxbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFHu0kWykdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFIKW9lErdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFTa24NI9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFeFeOXE7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFXKe05U+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFXbvoePrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFijhDPWydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFs1uaWondX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CkFtMN2C/XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFl9q1w5vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFm1toBaLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkFxrnLaEjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkF9QDeTFEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkF2B6By0bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkF2UBfa6CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGAtHhCMQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGLfag261dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGEEM1CPZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGE5o4+8odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGPh99c8ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGaL9/BnBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGSwlSjxkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGTFOoHcDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGeKKgqVhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGp0wJw85dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGihAWznidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGjKCYkVvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGuvg3tKJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkG6SbYsd1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGyv863iJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkGyxmK64EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkG92OZLIxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHIAjQiRodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHAgt4A0bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHAouPFNtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHL2Yv38GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHXHzH0btdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHPw0oBq9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHQ6xoqTbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHc4XfqHHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHoJPykKvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHgocaOxTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHhOjynUEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHs4YixFBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkH5FJ6IFedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHxndoFmndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkHyY3vQWvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkH91yvLX+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIIKPXCj2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIAtP557gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIBVbiZOSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIM7sOXmedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIYKBun/DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIQygf2bodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIRXBguyvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIccyeqaPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkImmL9/BndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIfFOfukUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIfbuDzy0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIqYBV+7UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkI2Up/gBLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CkIu5j6N2ldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL21sMi9hbmFjb25kYTMvZW52cy9odWdnaW5nZmFjZS1hMmMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9tbDIvYW5hY29uZGEzL2VudnMvaHVnZ2luZ2ZhY2UtYTJjL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.0-79-generic-x86_64-with-glibc2.31 # 86~20.04.2-Ubuntu SMP Mon Jul 17 23:27:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.0", "OpenAI Gym": "0.26.2"}}
replay.mp4 ADDED
Binary file (832 kB). View file
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-22T17:06:53.908434"}
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-22T17:19:50.904124"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:85d44e14af61b95e477d88bc9525454f71ed0946eb3e57a78be6183804b9e114
3
- size 3046
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:255afc1a9fb0089debe551508425a3fe5de1445a16ad8cd3df34467cb7acc330
3
+ size 3013