kartiknarayan commited on
Commit
56956f8
·
verified ·
1 Parent(s): dd07cf5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -0
README.md CHANGED
@@ -1,3 +1,52 @@
1
  ---
2
  license: mit
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - en
5
  ---
6
+
7
+ # Hyp-OC Model Card
8
+
9
+ <div align="center">
10
+
11
+ [**Project Page**]() **|** [**Paper (ArXiv)**]() **|** [**Code**]()
12
+
13
+
14
+ </div>
15
+
16
+ ## Introduction
17
+
18
+ Hyp-OC, is the first work exploring hyperbolic embeddings for one-class face anti-spoofing (OC-FAS).
19
+ We show that using hyperbolic space helps learn a better decision boundary than the Euclidean counterpart,
20
+ boosting one-class face anti-spoofing performance.
21
+
22
+ <div align="center">
23
+ <img src='assets/intro_viz.png'>
24
+ </div>
25
+
26
+ ## Training Framework
27
+
28
+ Overview of the proposed pipeline: Hyp-OC. The encoder extracts facial features which are used to estimate the mean of Gaussian
29
+ distribution utilized to sample pseudo-negative points. The real features and pseudo-negative features are then concatenated
30
+ and passed to FCNN for dimensionality reduction. The low-dimension features are mapped to Poincaré Ball using *exponential map*.
31
+ The training objective is to minimize the summation of the proposed loss functions Hyp-PC} and Hyp-CE. The result is a separating
32
+ *gyroplane* beneficial for one-class face anti-spoofing.
33
+
34
+ <div align="center">
35
+ <img src='assets/main_archi.png'>
36
+ </div>
37
+
38
+ ## Usage
39
+
40
+ The pre-trained weights can be downloaded directly from this repository or using python:
41
+ ```python
42
+ from huggingface_hub import hf_hub_download
43
+
44
+ hf_hub_download(repo_id="kartiknarayan/hyp-oc", filename="pretrained_weights/vgg_face_dag.pth", local_dir="./")
45
+ ```
46
+
47
+ ## Citation
48
+ ```bibtex
49
+ Coming soon ...
50
+ ```
51
+
52
+ Please check our [GitHub repository]() for complete instructions.