File size: 2,037 Bytes
2d4c6ae 8c1d2df 2d4c6ae 8c1d2df 2d4c6ae 8c1d2df 2d4c6ae 8c1d2df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
base_model: DeepPavlov/rubert-base-cased
tags:
- generated_from_trainer
- sentiment
metrics:
- f1
model-index:
- name: vashkontrol-sentiment-rubert
results: []
license: mit
datasets:
- kartashoffv/vash_kontrol_reviews
language:
- ru
pipeline_tag: text-classification
widget:
- text: "Отзывчивые и понимающие работники, обслуживание очень понравилось, специалист проявила большое терпение чтобы восстановить пароль от Госуслуг. Спасибо!"
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vashkontrol-sentiment-rubert
This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1085
- F1: 0.9461
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0992 | 1.0 | 1391 | 0.0737 | 0.9337 |
| 0.0585 | 2.0 | 2782 | 0.0616 | 0.9384 |
| 0.0358 | 3.0 | 4173 | 0.0787 | 0.9441 |
| 0.0221 | 4.0 | 5564 | 0.0918 | 0.9488 |
| 0.0106 | 5.0 | 6955 | 0.1085 | 0.9461 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3 |