kartashoffv commited on
Commit
6972403
1 Parent(s): e0fa0d5

Model save

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: DeepPavlov/rubert-base-cased
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - f1
7
+ model-index:
8
+ - name: news_topic_classification
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # news_topic_classification
16
+
17
+ This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.7058
20
+ - F1: 0.8712
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 2e-05
40
+ - train_batch_size: 10
41
+ - eval_batch_size: 10
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 5
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | F1 |
50
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
51
+ | 0.7979 | 1.0 | 700 | 0.5218 | 0.8569 |
52
+ | 0.3673 | 2.0 | 1400 | 0.5402 | 0.8697 |
53
+ | 0.2483 | 3.0 | 2100 | 0.6277 | 0.8668 |
54
+ | 0.1684 | 4.0 | 2800 | 0.6599 | 0.8712 |
55
+ | 0.1099 | 5.0 | 3500 | 0.7058 | 0.8712 |
56
+
57
+
58
+ ### Framework versions
59
+
60
+ - Transformers 4.33.1
61
+ - Pytorch 2.0.1+cu118
62
+ - Datasets 2.14.5
63
+ - Tokenizers 0.13.3