End of training
Browse files- .gitattributes +1 -0
- README.md +87 -0
- logs/events.out.tfevents.1713974668.4d1528901d50.487.0 +2 -2
- model.safetensors +1 -1
- preprocessor_config.json +25 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +77 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: SCUT-DLVCLab/lilt-infoxlm-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: menu-lilt-model-XLM-v3
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# menu-lilt-model-XLM-v3
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-infoxlm-base](https://huggingface.co/SCUT-DLVCLab/lilt-infoxlm-base) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0006
|
19 |
+
- Created: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18}
|
20 |
+
- Created Label: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18}
|
21 |
+
- Day Menu Label: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 126}
|
22 |
+
- Diet: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 101}
|
23 |
+
- Meal: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 4824}
|
24 |
+
- Meal Label: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 42}
|
25 |
+
- Meal Note Label: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 209}
|
26 |
+
- Menu Name: {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22}
|
27 |
+
- School Type: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3}
|
28 |
+
- Tag Value: {'precision': 0.974025974025974, 'recall': 0.9868421052631579, 'f1': 0.9803921568627451, 'number': 76}
|
29 |
+
- Validity: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 54}
|
30 |
+
- Validity Detail: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3}
|
31 |
+
- Weekday: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 275}
|
32 |
+
- Week Count: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 230}
|
33 |
+
- Overall Precision: 0.9993
|
34 |
+
- Overall Recall: 0.9997
|
35 |
+
- Overall F1: 0.9995
|
36 |
+
- Overall Accuracy: 0.9999
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 8
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- training_steps: 2500
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Created | Created Label | Day Menu Label | Diet | Meal | Meal Label | Meal Note Label | Menu Name | School Type | Tag Value | Validity | Validity Detail | Weekday | Week Count | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
67 |
+
|:-------------:|:-------:|:----:|:---------------:|:----------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
68 |
+
| 0.8513 | 4.5455 | 200 | 0.0523 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 0.7222222222222222, 'recall': 0.7222222222222222, 'f1': 0.7222222222222222, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 126} | {'precision': 0.8738738738738738, 'recall': 0.9603960396039604, 'f1': 0.9150943396226415, 'number': 101} | {'precision': 0.9637207340223581, 'recall': 0.947139303482587, 'f1': 0.9553580763199163, 'number': 4824} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 42} | {'precision': 0.9858490566037735, 'recall': 1.0, 'f1': 0.9928741092636578, 'number': 209} | {'precision': 0.5588235294117647, 'recall': 0.8636363636363636, 'f1': 0.6785714285714287, 'number': 22} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.9358974358974359, 'recall': 0.9605263157894737, 'f1': 0.948051948051948, 'number': 76} | {'precision': 0.7692307692307693, 'recall': 0.9259259259259259, 'f1': 0.8403361344537816, 'number': 54} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 275} | {'precision': 0.9704641350210971, 'recall': 1.0, 'f1': 0.9850107066381156, 'number': 230} | 0.9604 | 0.9533 | 0.9568 | 0.9884 |
|
69 |
+
| 0.0262 | 9.0909 | 400 | 0.0083 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 126} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 101} | {'precision': 0.9972972972972973, 'recall': 0.9944029850746269, 'f1': 0.9958480381980485, 'number': 4824} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 42} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 209} | {'precision': 0.6666666666666666, 'recall': 0.9090909090909091, 'f1': 0.7692307692307692, 'number': 22} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.9868421052631579, 'recall': 0.9868421052631579, 'f1': 0.9868421052631579, 'number': 76} | {'precision': 0.9473684210526315, 'recall': 1.0, 'f1': 0.972972972972973, 'number': 54} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 275} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 230} | 0.9938 | 0.9940 | 0.9939 | 0.9980 |
|
70 |
+
| 0.0067 | 13.6364 | 600 | 0.0034 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 126} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 101} | {'precision': 0.9977164210089268, 'recall': 0.996268656716418, 'f1': 0.9969920132766311, 'number': 4824} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 42} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 209} | {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 76} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 275} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 230} | 0.9978 | 0.9968 | 0.9973 | 0.9993 |
|
71 |
+
| 0.0046 | 18.1818 | 800 | 0.0023 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 126} | {'precision': 0.9803921568627451, 'recall': 0.9900990099009901, 'f1': 0.9852216748768472, 'number': 101} | {'precision': 0.9987557030277893, 'recall': 0.9983416252072969, 'f1': 0.9985486211901307, 'number': 4824} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 42} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 209} | {'precision': 0.8333333333333334, 'recall': 0.9090909090909091, 'f1': 0.8695652173913043, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 0.9868421052631579, 'recall': 0.9868421052631579, 'f1': 0.9868421052631579, 'number': 76} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 275} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 230} | 0.9978 | 0.9980 | 0.9979 | 0.9994 |
|
72 |
+
| 0.002 | 22.7273 | 1000 | 0.0026 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 126} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 101} | {'precision': 0.9983395599833956, 'recall': 0.9970978441127695, 'f1': 0.9977183157021364, 'number': 4824} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 42} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 209} | {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 76} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 275} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 230} | 0.9983 | 0.9975 | 0.9979 | 0.9995 |
|
73 |
+
| 0.0015 | 27.2727 | 1200 | 0.0017 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 126} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 101} | {'precision': 0.9991701244813278, 'recall': 0.9983416252072969, 'f1': 0.9987557030277893, 'number': 4824} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 42} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 209} | {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 0.9868421052631579, 'recall': 0.9868421052631579, 'f1': 0.9868421052631579, 'number': 76} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 275} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 230} | 0.9988 | 0.9983 | 0.9986 | 0.9995 |
|
74 |
+
| 0.0012 | 31.8182 | 1400 | 0.0026 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 126} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 101} | {'precision': 0.9997926601700187, 'recall': 0.9995854063018242, 'f1': 0.9996890224940397, 'number': 4824} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 42} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 209} | {'precision': 0.8695652173913043, 'recall': 0.9090909090909091, 'f1': 0.888888888888889, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 0.9868421052631579, 'recall': 0.9868421052631579, 'f1': 0.9868421052631579, 'number': 76} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 275} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 230} | 0.9992 | 0.9992 | 0.9992 | 0.9995 |
|
75 |
+
| 0.0011 | 36.3636 | 1600 | 0.0012 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 126} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 101} | {'precision': 0.9993777224642191, 'recall': 0.9987562189054726, 'f1': 0.9990668740279938, 'number': 4824} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 42} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 209} | {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 76} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 275} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 230} | 0.9992 | 0.9988 | 0.999 | 0.9997 |
|
76 |
+
| 0.0008 | 40.9091 | 1800 | 0.0008 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 126} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 101} | {'precision': 0.9997926601700187, 'recall': 0.9995854063018242, 'f1': 0.9996890224940397, 'number': 4824} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 42} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 209} | {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 0.9868421052631579, 'recall': 0.9868421052631579, 'f1': 0.9868421052631579, 'number': 76} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 275} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 230} | 0.9993 | 0.9993 | 0.9993 | 0.9997 |
|
77 |
+
| 0.0006 | 45.4545 | 2000 | 0.0009 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 126} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 101} | {'precision': 0.9997926601700187, 'recall': 0.9995854063018242, 'f1': 0.9996890224940397, 'number': 4824} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 42} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 209} | {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 0.9868421052631579, 'recall': 0.9868421052631579, 'f1': 0.9868421052631579, 'number': 76} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 275} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 230} | 0.9993 | 0.9993 | 0.9993 | 0.9997 |
|
78 |
+
| 0.0005 | 50.0 | 2200 | 0.0006 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 126} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 101} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 4824} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 42} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 209} | {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 0.9868421052631579, 'recall': 0.9868421052631579, 'f1': 0.9868421052631579, 'number': 76} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 275} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 230} | 0.9995 | 0.9997 | 0.9996 | 0.9998 |
|
79 |
+
| 0.0005 | 54.5455 | 2400 | 0.0006 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 18} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 126} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 101} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 4824} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 42} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 209} | {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 0.974025974025974, 'recall': 0.9868421052631579, 'f1': 0.9803921568627451, 'number': 76} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 275} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 230} | 0.9993 | 0.9997 | 0.9995 | 0.9999 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.40.0
|
85 |
+
- Pytorch 2.2.1+cu121
|
86 |
+
- Datasets 2.19.0
|
87 |
+
- Tokenizers 0.19.1
|
logs/events.out.tfevents.1713974668.4d1528901d50.487.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13358d6d6f0ebfadc91c5549080931f34b60c83a2832d45f3e356d8b1fece35b
|
3 |
+
size 15471
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1134406060
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b8717da670fe83a102b1a3d681154f0ab448ecf06a72d070ac01353a338eba1
|
3 |
size 1134406060
|
preprocessor_config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_valid_processor_keys": [
|
3 |
+
"images",
|
4 |
+
"do_resize",
|
5 |
+
"size",
|
6 |
+
"resample",
|
7 |
+
"apply_ocr",
|
8 |
+
"ocr_lang",
|
9 |
+
"tesseract_config",
|
10 |
+
"return_tensors",
|
11 |
+
"data_format",
|
12 |
+
"input_data_format"
|
13 |
+
],
|
14 |
+
"apply_ocr": false,
|
15 |
+
"do_resize": true,
|
16 |
+
"image_processor_type": "LayoutLMv2FeatureExtractor",
|
17 |
+
"ocr_lang": null,
|
18 |
+
"processor_class": "LayoutXLMProcessor",
|
19 |
+
"resample": 2,
|
20 |
+
"size": {
|
21 |
+
"height": 224,
|
22 |
+
"width": 224
|
23 |
+
},
|
24 |
+
"tesseract_config": ""
|
25 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4508a62680ca24eff6a8ba74127c053afe12f9b8fe33296729bce17426e460d4
|
3 |
+
size 17083001
|
tokenizer_config.json
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"cls_token_box": [
|
48 |
+
0,
|
49 |
+
0,
|
50 |
+
0,
|
51 |
+
0
|
52 |
+
],
|
53 |
+
"eos_token": "</s>",
|
54 |
+
"mask_token": "<mask>",
|
55 |
+
"model_max_length": 1000000000000000019884624838656,
|
56 |
+
"only_label_first_subword": true,
|
57 |
+
"pad_token": "<pad>",
|
58 |
+
"pad_token_box": [
|
59 |
+
0,
|
60 |
+
0,
|
61 |
+
0,
|
62 |
+
0
|
63 |
+
],
|
64 |
+
"pad_token_label": -100,
|
65 |
+
"processor_class": "LayoutXLMProcessor",
|
66 |
+
"return_special_tokens_mask": true,
|
67 |
+
"return_tensors": "pt",
|
68 |
+
"sep_token": "</s>",
|
69 |
+
"sep_token_box": [
|
70 |
+
1000,
|
71 |
+
1000,
|
72 |
+
1000,
|
73 |
+
1000
|
74 |
+
],
|
75 |
+
"tokenizer_class": "LayoutXLMTokenizer",
|
76 |
+
"unk_token": "<unk>"
|
77 |
+
}
|