File size: 13,688 Bytes
fffa696
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2a0c776ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2a0c776f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2a0c777010>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2a0c7770a0>", "_build": "<function ActorCriticPolicy._build at 0x7f2a0c777130>", "forward": "<function ActorCriticPolicy.forward at 0x7f2a0c7771c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2a0c777250>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2a0c7772e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2a0c777370>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2a0c777400>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2a0c777490>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2a0c777520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2a0c6f4400>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1727550395279462365, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpQTj7oK6O8nvVqO/LXtblcfxG+cPqVugAAgD8AAIA/DTaBvm/4CT09gfK6EqbTOb47lL7EcUI6AACAPwAAgD+TykU+bMDRPKD9xboHXVi5eftpPs2SYroAAIA/AACAP6Yij72PLn66fdEEur4/EjW5mJG69aAZOQAAgD8AAIA/0CdUvvelCr2uCcO5AGmkuHEEdj6xDg05AACAPwAAgD8aGSO+XCG9P040IL+VYE6+BJQPvkrnCL4AAAAAAAAAAMoaeL5UiuA+1cN0vDBenL6Fnc69xvmGPQAAAAAAAAAAJuOCPVhXwj/yv60+tS4kPezl/Ts+BY89AAAAAAAAAAAmQg++ePyHP3pd9b7zVka/CuoNvoIfAr4AAAAAAAAAANOhFj5hjqQ/GsDjPseLC7+YG7o9CTQyPQAAAAAAAAAAAAT5uzamQD0LFHM8RmxLvlWAmjs27mS8AAAAAAAAAAAzmOm8bMvguxq5CD2LdGe7CEwMPK2uXb0AAIA/AACAP02IOz4IIc282K3xug5QeDmJoDy+DVAqOgAAgD8AAIA/4BnqvibQGj/QNbm94FoJvzEqhr7zeuU9AAAAAAAAAABC66K+X8BNP0qo+L7clim/lL6Pvqgxv7wAAAAAAAAAACrkmz6ak1g/FSNPPjMyA7/Bdlw+Q5HOvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+xLPMSsbOMAWyUS86MAXSUR0CeGHIAfdRBdX2UKGgGR0Bg0+89Oh0yaAdN6ANoCEdAnhpkVi4J/3V9lChoBkdAcVlK8L8aXWgHS/5oCEdAnhva+36RAHV9lChoBkdAb1IDFId2gWgHS9NoCEdAnhxSFGoaUHV9lChoBkdAcAWrTH80lGgHTQABaAhHQJ4ddYV6/qR1fZQoaAZHQHAKlGPPszFoB0vKaAhHQJ4d1aePJaJ1fZQoaAZHQHHRilvZRKpoB0vRaAhHQJ4eBbbDdgx1fZQoaAZHQDmzRsuWa+hoB0umaAhHQJ4eBggHNX51fZQoaAZHQHIA/I4lyBFoB0vXaAhHQJ4eGEug6EJ1fZQoaAZHQHFX3SfDk2hoB00RAWgIR0CeHmdepn6EdX2UKGgGR0Bwo5Z6lchUaAdL+WgIR0CeHuzCUHIIdX2UKGgGR0BjABBC2MKkaAdN6ANoCEdAnh86FAVwgnV9lChoBkdAcf7rvsqrimgHTWMBaAhHQJ4f7dKujh11fZQoaAZHQHKCV/hESdxoB00MAWgIR0CeIghY/3WXdX2UKGgGR0BuV/R7Z39raAdL/mgIR0CeIzPT5O8DdX2UKGgGR0BxxwiiZfD2aAdLvmgIR0CeI9BAfMfSdX2UKGgGR0BwXXDuSfUXaAdL8mgIR0CeJJWJrLyMdX2UKGgGR0BxqRVzZHuraAdLxmgIR0CeJO+BH09RdX2UKGgGR0ByxlZfUnXvaAdLx2gIR0CeJWFINEw4dX2UKGgGR0Bx+mEM9bHIaAdNKAFoCEdAniYpsoDxLHV9lChoBkdAcQoL127nPmgHS89oCEdAnibIldC3PXV9lChoBkdAcb7BxgiNbWgHTQwBaAhHQJ4nn0K7ZnN1fZQoaAZHQHEgUvwmVqxoB0vUaAhHQJ4n+05U96l1fZQoaAZHQHCtWbPQfIVoB00WAWgIR0CeKA+qR2bHdX2UKGgGR0BszzDIikftaAdNLgFoCEdAnii/3BYV7HV9lChoBkdAcgea4+bExmgHS9poCEdAnirHwb2lEnV9lChoBkdAcPL+49X9zmgHS+xoCEdAni0JjhDPW3V9lChoBkdAcgu/GVAzHmgHS9FoCEdAni1a/qPfbnV9lChoBkdAcd+Gs3hn8WgHS/RoCEdAni4uzlcQiHV9lChoBkdAcQ5Np/PPcGgHS9xoCEdAni5R3mmtQ3V9lChoBkdAcIWNuLrHEWgHS8VoCEdAnjCSeRPoFHV9lChoBkdAcekYXwb2lGgHS/JoCEdAnjEHxvvSdHV9lChoBkdAbnX1UVBUrGgHS81oCEdAnjGDWPLgXXV9lChoBkdAc4rv0yxiX2gHS+toCEdAnjL2HHmzSnV9lChoBkdAYCVd56dDpmgHTegDaAhHQJ40wS+QEIR1fZQoaAZHQGLVd/J/5L1oB03oA2gIR0CeNbKyv9tNdX2UKGgGR0ByI3V4HHFQaAdNEAFoCEdAnjXQ9vCMxXV9lChoBkdAcppAk9lmOGgHS+5oCEdAnjaJYxL0z3V9lChoBkdAcslo7muDBmgHTVYBaAhHQJ42xzV+Zw51fZQoaAZHQHDi/z4DcM5oB0vHaAhHQJ429vvSc9Z1fZQoaAZHQEq4xxkupS9oB0u9aAhHQJ43pxT850d1fZQoaAZHQHB1d9H+ZPVoB0vgaAhHQJ44RZX+2mZ1fZQoaAZHQHB+kc0cfeVoB0v3aAhHQJ46BLBbfP51fZQoaAZHQG/XzZpSJj5oB0vSaAhHQJ46c+Y+jdp1fZQoaAZHQEDBvPTodMloB0u8aAhHQJ47enHeaa11fZQoaAZHQHD3i9IwudxoB0v0aAhHQJ48OxiXpnp1fZQoaAZHQF+lXUYsNDtoB03oA2gIR0CePlum78NydX2UKGgGR0BwPtWGRFI/aAdLx2gIR0CePmS1Vo6CdX2UKGgGR0Bxzre54GD+aAdNJwFoCEdAnj8D+m3vyHV9lChoBkdAbb1420iQk2gHS9VoCEdAnj8jAvcrRXV9lChoBkdAcWcLt/nW8WgHS8ZoCEdAnj+A0bcXWXV9lChoBkdAbUM078vVVmgHS95oCEdAnkBLeMyaeHV9lChoBkdAcNclsguAZ2gHS+doCEdAnkBtelbeM3V9lChoBkdAcJYHKOktVmgHS85oCEdAnkBwrQPZqXV9lChoBkdAcc1jSG8Em2gHS9VoCEdAnkE9uYQarHV9lChoBkdAcgNlO45LiGgHS+FoCEdAnkMlb/wRXnV9lChoBkdAbzj/6wdKd2gHS75oCEdAnkPOpKjBVXV9lChoBkdAbIMeRxLkCGgHS9loCEdAnkRH+l0o0HV9lChoBkdAcoOps41gpmgHS8toCEdAnkcR0hePaXV9lChoBkdAcUO6f8MuvmgHS+9oCEdAnkj1+qioKnV9lChoBkdAbvNmbLEDQ2gHS+poCEdAnkl63RXwLHV9lChoBkdAcH9NEgGKRGgHS9FoCEdAnkns3hn8K3V9lChoBkdAcUFDDTBqK2gHS9FoCEdAnkol7Qb++HV9lChoBkdAcDwsCDEm6WgHS9RoCEdAnkpJy+6AfHV9lChoBkdAYpYCTUy57WgHTegDaAhHQJ5KcTM7lq91fZQoaAZHQG/ccKw6hg5oB0vMaAhHQJ5LCQcPvrp1fZQoaAZHQHKfNdJJ5FBoB00JAWgIR0CeS7kyULUkdX2UKGgGR0BvPIJw84giaAdL5mgIR0CeTu2l2vB8dX2UKGgGR0Bu6/zWf9P2aAdL02gIR0CeT03c580DdX2UKGgGR0Bx9qDCgsbvaAdL8GgIR0CeUCPUaybAdX2UKGgGR0BveHA0sOG1aAdLv2gIR0CeUk3PiT+vdX2UKGgGR0BiBeVE/jbSaAdN6ANoCEdAnlL3Xd0q6XV9lChoBkdAcUnOwPiDNGgHS/1oCEdAnlNJb2USqXV9lChoBkdAbY9IyTINmWgHS9doCEdAnlN/8ZUDMnV9lChoBkdAcVjF2V3Ux2gHS95oCEdAnlQBreqJdnV9lChoBkdAcP7sT37DVGgHS/NoCEdAnlThikO7QXV9lChoBkdAcZ6k+X7cf2gHS+9oCEdAnlU23z+WGHV9lChoBkdAb/MTcqOLi2gHS+FoCEdAnlU8W43FUHV9lChoBkdAcJD6xgRbr2gHS9FoCEdAnlcQC8vmHXV9lChoBkdAcBQ5hBqsVGgHS9FoCEdAnle13hXKbXV9lChoBkdAcJAC6pYLcGgHS9xoCEdAnlrJWNm16XV9lChoBkdAcLRBBRhttWgHTQkBaAhHQJ5bfRhMJyB1fZQoaAZHQHCfTsD4gzRoB0v4aAhHQJ5cFqYZ2p11fZQoaAZHQHEfpuVHFxZoB0v0aAhHQJ5cgu9OARV1fZQoaAZHQG6ETwtrbg1oB0vZaAhHQJ5c8+MZP2x1fZQoaAZHQHGO5cTrVvxoB0vhaAhHQJ5dN76YVqN1fZQoaAZHQHKijLB9Cu5oB000AWgIR0CeXcBEKE39dX2UKGgGR0BvffCoCMgmaAdNkgFoCEdAnl3Vk1/DtXV9lChoBkdAY4TC9AX2umgHTegDaAhHQJ5exnHvMKV1fZQoaAZHQHAkA8W9DhNoB0vmaAhHQJ5fiVeKKpF1fZQoaAZHQHDdJ8Sf16FoB0vfaAhHQJ5f+uA7Ppp1fZQoaAZHQD0zlOoHcDdoB0tYaAhHQJ5gcXQ+lj51fZQoaAZHQHHxqePJaJRoB0vqaAhHQJ5jk9KVY6p1fZQoaAZHQGLqOCf6Gg1oB03oA2gIR0CeY5rCm/FjdX2UKGgGR0BB4CILw4KhaAdLwmgIR0CeZD/cWTHKdX2UKGgGR0BwwpLsa86FaAdL7GgIR0CeZPgNPP9ldX2UKGgGR0BwcUxXXAdoaAdL72gIR0CeZYDp1RtQdX2UKGgGR0BxkbDR+jM3aAdLuGgIR0CeZbLTQVsUdX2UKGgGR0BubJL9MsYmaAdL1WgIR0CeZdxVQyh0dX2UKGgGR0BwDtgmZ3LWaAdL3mgIR0CeZhrLhaTwdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}