update model card README.md
Browse files
README.md
CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Precision: 0.
|
24 |
-
- Recall: 0.
|
25 |
-
- F1: 0.
|
26 |
-
- Accuracy: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -43,8 +43,8 @@ More information needed
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 5e-06
|
46 |
-
- train_batch_size:
|
47 |
-
- eval_batch_size:
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
@@ -54,28 +54,13 @@ The following hyperparameters were used during training:
|
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
-
|
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.1064 | 3.6 | 3200 | 0.1342 | 0.7955 | 0.8909 | 0.8405 | 0.9711 |
|
65 |
-
| 0.1116 | 4.04 | 3600 | 0.1314 | 0.7981 | 0.8984 | 0.8453 | 0.9713 |
|
66 |
-
| 0.0981 | 4.49 | 4000 | 0.1433 | 0.8059 | 0.8834 | 0.8429 | 0.9717 |
|
67 |
-
| 0.0981 | 4.94 | 4400 | 0.1439 | 0.8051 | 0.9026 | 0.8510 | 0.9719 |
|
68 |
-
| 0.0936 | 5.39 | 4800 | 0.1661 | 0.8180 | 0.8943 | 0.8544 | 0.9735 |
|
69 |
-
| 0.082 | 5.84 | 5200 | 0.1558 | 0.8179 | 0.8843 | 0.8498 | 0.9727 |
|
70 |
-
| 0.084 | 6.29 | 5600 | 0.1553 | 0.7918 | 0.8930 | 0.8394 | 0.9699 |
|
71 |
-
| 0.0782 | 6.74 | 6000 | 0.1457 | 0.7817 | 0.8943 | 0.8342 | 0.9684 |
|
72 |
-
| 0.0782 | 7.19 | 6400 | 0.1793 | 0.8134 | 0.8913 | 0.8506 | 0.9726 |
|
73 |
-
| 0.0694 | 7.64 | 6800 | 0.1638 | 0.7974 | 0.8930 | 0.8425 | 0.9707 |
|
74 |
-
| 0.0757 | 8.09 | 7200 | 0.1690 | 0.8042 | 0.8976 | 0.8483 | 0.9714 |
|
75 |
-
| 0.0665 | 8.54 | 7600 | 0.1813 | 0.8110 | 0.8951 | 0.8510 | 0.9724 |
|
76 |
-
| 0.0607 | 8.99 | 8000 | 0.1907 | 0.8226 | 0.8938 | 0.8567 | 0.9738 |
|
77 |
-
| 0.0607 | 9.44 | 8400 | 0.1848 | 0.8062 | 0.8938 | 0.8478 | 0.9719 |
|
78 |
-
| 0.0649 | 9.89 | 8800 | 0.1884 | 0.8153 | 0.8947 | 0.8531 | 0.9729 |
|
79 |
|
80 |
|
81 |
### Framework versions
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0681
|
23 |
+
- Precision: 0.8554
|
24 |
+
- Recall: 0.8743
|
25 |
+
- F1: 0.8647
|
26 |
+
- Accuracy: 0.9769
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 5e-06
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 24
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
|
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.2606 | 1.12 | 500 | 0.0822 | 0.7976 | 0.8664 | 0.8306 | 0.9712 |
|
58 |
+
| 0.0837 | 2.25 | 1000 | 0.0955 | 0.7657 | 0.8764 | 0.8173 | 0.9683 |
|
59 |
+
| 0.0706 | 3.37 | 1500 | 0.0732 | 0.8322 | 0.8714 | 0.8513 | 0.9750 |
|
60 |
+
| 0.0631 | 4.49 | 2000 | 0.0681 | 0.8554 | 0.8743 | 0.8647 | 0.9769 |
|
61 |
+
| 0.0549 | 5.62 | 2500 | 0.0713 | 0.8356 | 0.8868 | 0.8604 | 0.9754 |
|
62 |
+
| 0.0521 | 6.74 | 3000 | 0.0700 | 0.8425 | 0.8863 | 0.8639 | 0.9759 |
|
63 |
+
| 0.0493 | 7.87 | 3500 | 0.0721 | 0.8444 | 0.8859 | 0.8647 | 0.9763 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
|
66 |
### Framework versions
|