File size: 1,865 Bytes
6172bee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: electra-large-discriminator-ner-food-combined-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# electra-large-discriminator-ner-food-combined-v2

This model is a fine-tuned version of [google/electra-large-discriminator](https://huggingface.co/google/electra-large-discriminator) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0754
- Precision: 0.8634
- Recall: 0.8838
- F1: 0.8735
- Accuracy: 0.9760

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1052        | 1.12  | 500  | 0.0754          | 0.8634    | 0.8838 | 0.8735 | 0.9760   |
| 0.0682        | 2.25  | 1000 | 0.0774          | 0.8468    | 0.8972 | 0.8712 | 0.9747   |
| 0.0589        | 3.37  | 1500 | 0.0765          | 0.8731    | 0.8705 | 0.8718 | 0.9756   |
| 0.0527        | 4.49  | 2000 | 0.0796          | 0.8669    | 0.8705 | 0.8687 | 0.9751   |


### Framework versions

- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3