update model card README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
metrics:
|
@@ -16,13 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
# electra-base-ner-food-recipe-v2
|
18 |
|
19 |
-
This model
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.
|
22 |
-
- Precision: 0.
|
23 |
-
- Recall: 0.
|
24 |
-
- F1: 0.
|
25 |
-
- Accuracy: 0.
|
26 |
|
27 |
## Model description
|
28 |
|
@@ -41,7 +42,7 @@ More information needed
|
|
41 |
### Training hyperparameters
|
42 |
|
43 |
The following hyperparameters were used during training:
|
44 |
-
- learning_rate: 5e-
|
45 |
- train_batch_size: 8
|
46 |
- eval_batch_size: 8
|
47 |
- seed: 42
|
@@ -53,15 +54,15 @@ The following hyperparameters were used during training:
|
|
53 |
|
54 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
55 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
56 |
-
| No log | 0.5 | 400 | 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
|
66 |
|
67 |
### Framework versions
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
metrics:
|
|
|
17 |
|
18 |
# electra-base-ner-food-recipe-v2
|
19 |
|
20 |
+
This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1500
|
23 |
+
- Precision: 0.7191
|
24 |
+
- Recall: 0.8739
|
25 |
+
- F1: 0.7890
|
26 |
+
- Accuracy: 0.9568
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
42 |
### Training hyperparameters
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-07
|
46 |
- train_batch_size: 8
|
47 |
- eval_batch_size: 8
|
48 |
- seed: 42
|
|
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 0.5 | 400 | 0.4360 | 0.4354 | 0.7533 | 0.5519 | 0.8775 |
|
58 |
+
| 0.5627 | 1.01 | 800 | 0.2274 | 0.6971 | 0.8525 | 0.7670 | 0.9508 |
|
59 |
+
| 0.2799 | 1.51 | 1200 | 0.1791 | 0.6728 | 0.8762 | 0.7612 | 0.9492 |
|
60 |
+
| 0.1983 | 2.01 | 1600 | 0.1652 | 0.6958 | 0.8757 | 0.7755 | 0.9535 |
|
61 |
+
| 0.1821 | 2.51 | 2000 | 0.1610 | 0.7171 | 0.8766 | 0.7889 | 0.9568 |
|
62 |
+
| 0.1821 | 3.02 | 2400 | 0.1550 | 0.7001 | 0.8757 | 0.7782 | 0.9539 |
|
63 |
+
| 0.1726 | 3.52 | 2800 | 0.1537 | 0.7211 | 0.8744 | 0.7904 | 0.9573 |
|
64 |
+
| 0.1674 | 4.02 | 3200 | 0.1510 | 0.7170 | 0.8739 | 0.7877 | 0.9565 |
|
65 |
+
| 0.1682 | 4.52 | 3600 | 0.1501 | 0.7147 | 0.8744 | 0.7865 | 0.9564 |
|
66 |
|
67 |
|
68 |
### Framework versions
|