File size: 2,916 Bytes
292e39a
 
 
 
 
 
 
 
 
71efe5f
292e39a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
base_model: google/electra-base-discriminator
model-index:
- name: electra-base-discriminator-ner-food-combined-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# electra-base-discriminator-ner-food-combined-v2

This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1277
- Precision: 0.8006
- Recall: 0.8959
- F1: 0.8456
- Accuracy: 0.9685

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 0.45  | 400  | 0.1279          | 0.7429    | 0.8888 | 0.8093 | 0.9603   |
| 0.2005        | 0.9   | 800  | 0.1306          | 0.8145    | 0.8901 | 0.8506 | 0.9704   |
| 0.1305        | 1.35  | 1200 | 0.1197          | 0.7847    | 0.8951 | 0.8363 | 0.9667   |
| 0.1143        | 1.8   | 1600 | 0.1118          | 0.7876    | 0.8922 | 0.8366 | 0.9661   |
| 0.1169        | 2.25  | 2000 | 0.1125          | 0.7724    | 0.8959 | 0.8296 | 0.9647   |
| 0.1169        | 2.7   | 2400 | 0.1167          | 0.7964    | 0.8922 | 0.8415 | 0.9674   |
| 0.1007        | 3.15  | 2800 | 0.1222          | 0.8170    | 0.8905 | 0.8522 | 0.9708   |
| 0.1008        | 3.6   | 3200 | 0.1164          | 0.7732    | 0.8913 | 0.8281 | 0.9640   |
| 0.0973        | 4.04  | 3600 | 0.1190          | 0.8093    | 0.8993 | 0.8519 | 0.9697   |
| 0.0948        | 4.49  | 4000 | 0.1221          | 0.7977    | 0.8947 | 0.8434 | 0.9676   |
| 0.0948        | 4.94  | 4400 | 0.1220          | 0.8009    | 0.8993 | 0.8472 | 0.9684   |
| 0.0857        | 5.39  | 4800 | 0.1292          | 0.8085    | 0.8963 | 0.8501 | 0.9694   |
| 0.0845        | 5.84  | 5200 | 0.1318          | 0.8236    | 0.8943 | 0.8575 | 0.9710   |
| 0.0877        | 6.29  | 5600 | 0.1246          | 0.7940    | 0.8972 | 0.8425 | 0.9674   |
| 0.0825        | 6.74  | 6000 | 0.1277          | 0.8006    | 0.8959 | 0.8456 | 0.9685   |


### Framework versions

- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3