kambehmw commited on
Commit
8f3d1d1
·
1 Parent(s): 577ba50

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 251.06 +/- 13.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6444cb2d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6444cb2dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6444cb2e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6444cb2ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f6444cb2f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f6444cb6040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6444cb60d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6444cb6160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6444cb61f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6444cb6280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6444cb6310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6444cb63a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6444cb3c00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680515797101568509, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKCMF76ULOE+rncnPe1khr7Vv9W8ztC2PAAAAAAAAAAAGhJWPYIWsj+LSt8+eXFZvtG5hzz+sDg+AAAAAAAAAABmx8E8VHGmPlC3Lr3qWma+f4uHuyKbez0AAAAAAAAAAKatfb75wRk/UdBBPgMiSL7Loo29tAUMPgAAAAAAAAAAmjMpvGi+rz/+oKu+l4YWv9/VwDtdyrS7AAAAAAAAAAAz+yc8ewavugZgIrPCmXqwqhWYud5GwzMAAIA/AACAP5pjdz7Ifpc/YiaAPgKPyL4BM2c+rTf6PAAAAAAAAAAAM62pPMcFTz5y6ra9pudQvqP0ob17rvw8AAAAAAAAAABKnKw+f1qFP9NTnD4Z0vK+eIKaPmuSpbsAAAAAAAAAAJNBJL5A84Y+0+88PnImAr53Blm8hAaWPAAAAAAAAAAAmskXO8//WD+yleQ7hJ2WvrPF4jxor5a8AAAAAAAAAACaPze+yCmEPweunr60ZMW+teaevmrq3L0AAAAAAAAAAC3aQT7wnyI/A8R6vH39lr5h5rU9gPYnvQAAAAAAAAAAGmiyvXvuhLp/lBs7nHNdN7wbsDoMJkq6AACAPwAAAAAajio9kr/zPv46kD1jt5S+NEKpPREmhz0AAAAAAAAAAGahiDwUs8m8kGIXvu+J3b2s9ws+9TL+PgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIz9xDwncTcUCUhpRSlIwBbJRNPgGMAXSUR0CRvV0NSZSfdX2UKGgGaAloD0MIVW03wTf5b0CUhpRSlGgVTTABaBZHQJG94EaESM91fZQoaAZoCWgPQwhfQC/cOQNvQJSGlFKUaBVNFgFoFkdAkb7Z/G2kSHV9lChoBmgJaA9DCN7Jp8c2rm9AlIaUUpRoFU1PAWgWR0CRv/1D0DlpdX2UKGgGaAloD0MIZXJqZxjmbECUhpRSlGgVTR4BaBZHQJHAjA31jAl1fZQoaAZoCWgPQwjYRGYucMJvQJSGlFKUaBVNLwFoFkdAkcD889wFT3V9lChoBmgJaA9DCANC6+HLtXFAlIaUUpRoFU1OAWgWR0CRw0eyRjjJdX2UKGgGaAloD0MImWIOgg5fcECUhpRSlGgVTRoBaBZHQJHEUOqebut1fZQoaAZoCWgPQwhXPWAesihwQJSGlFKUaBVNJgFoFkdAkcW5C0F8onV9lChoBmgJaA9DCKYnLPEAEHJAlIaUUpRoFU0iAWgWR0CRxsVNYbKidX2UKGgGaAloD0MIFjJXBtWxa0CUhpRSlGgVTa4BaBZHQJHHJqVQhwF1fZQoaAZoCWgPQwiGBIwu72FsQJSGlFKUaBVNGQFoFkdAkcgGnXNC7nV9lChoBmgJaA9DCLsqUIsBsXFAlIaUUpRoFU3RAWgWR0CRyPm/WUbDdX2UKGgGaAloD0MIKBB2itXTbUCUhpRSlGgVTUgBaBZHQJHKrMqz7dl1fZQoaAZoCWgPQwiBr+jWK+FwQJSGlFKUaBVNZwFoFkdAkctKLOzIFXV9lChoBmgJaA9DCE34pX7eVnJAlIaUUpRoFU23AWgWR0CRy+4zabnYdX2UKGgGaAloD0MIDaoNTkR5bkCUhpRSlGgVTRIBaBZHQJHL+clPact1fZQoaAZoCWgPQwilEMglDvdvQJSGlFKUaBVNMQFoFkdAkcwPqC6H03V9lChoBmgJaA9DCNHP1OvW2HBAlIaUUpRoFU0hAWgWR0CRzA5PuXu3dX2UKGgGaAloD0MIpddmY2XfcUCUhpRSlGgVTXYBaBZHQJHNRwaR6nl1fZQoaAZoCWgPQwibdFsiF1tRQJSGlFKUaBVLqGgWR0CRzXFspG4JdX2UKGgGaAloD0MIsRTJVwKNbkCUhpRSlGgVTTABaBZHQJHPDSlWOp91fZQoaAZoCWgPQwh+N92yQz9wQJSGlFKUaBVNGQFoFkdAkc80PYnOSnV9lChoBmgJaA9DCMl1U8prj19AlIaUUpRoFU3oA2gWR0CRz7HQQcxTdX2UKGgGaAloD0MITYQNT6/BbECUhpRSlGgVTSABaBZHQJHQmFHrhR91fZQoaAZoCWgPQwhJFFrWfdRvQJSGlFKUaBVNKwFoFkdAkdIChew9q3V9lChoBmgJaA9DCKUSntCrmHFAlIaUUpRoFU1NA2gWR0CR0yzgdfb9dX2UKGgGaAloD0MIS8tIvSf0cECUhpRSlGgVTQwBaBZHQJHU/R+jM3Z1fZQoaAZoCWgPQwhzafzCq7NwQJSGlFKUaBVNDAFoFkdAkdUT+ee4C3V9lChoBmgJaA9DCFtAaD18h0FAlIaUUpRoFUvoaBZHQJHVbh1klNV1fZQoaAZoCWgPQwiN0M/U6/1uQJSGlFKUaBVNHAFoFkdAkdWT0HyEtnV9lChoBmgJaA9DCEATYcNThXFAlIaUUpRoFU03AWgWR0CR1f1BMSK4dX2UKGgGaAloD0MIpu7KLtjlcUCUhpRSlGgVTYIBaBZHQJHV/a/RE4N1fZQoaAZoCWgPQwhvRs1XyUdwQJSGlFKUaBVNTAFoFkdAkdY3GGVRk3V9lChoBmgJaA9DCFU01v6OUnBAlIaUUpRoFU0uAWgWR0CR1kykKu0UdX2UKGgGaAloD0MI8mH2su2VckCUhpRSlGgVTQkBaBZHQJHWYuUUwi91fZQoaAZoCWgPQwj4TzdQYGBvQJSGlFKUaBVNnwFoFkdAkddEzTF2m3V9lChoBmgJaA9DCE7VPbK5o29AlIaUUpRoFU0lAWgWR0CR2HMI/qxDdX2UKGgGaAloD0MIurw5XCv9bECUhpRSlGgVTS4BaBZHQJHZETufEn91fZQoaAZoCWgPQwgg1EUKpetwQJSGlFKUaBVNSgFoFkdAkdlKuOjqOnV9lChoBmgJaA9DCA4SonzBQHJAlIaUUpRoFU0fAWgWR0CR2WhWYF7ldX2UKGgGaAloD0MI0/pbArBrcUCUhpRSlGgVTQMBaBZHQJHar9m6Gxl1fZQoaAZoCWgPQwif46PFmWBxQJSGlFKUaBVNTwFoFkdAkdv6HXVbzXV9lChoBmgJaA9DCCO6Z11jXnJAlIaUUpRoFU0aAWgWR0CR3Y29tdiVdX2UKGgGaAloD0MIX9Gt17TjcECUhpRSlGgVTUIBaBZHQJHer9gnc+J1fZQoaAZoCWgPQwjzA1d5wnxzQJSGlFKUaBVNLgFoFkdAkd7Y+r2g4HV9lChoBmgJaA9DCPYjRWRYkmpAlIaUUpRoFU0qAWgWR0CR3zi8WbgCdX2UKGgGaAloD0MIb2b0o6E5cUCUhpRSlGgVTUoBaBZHQJHfYcghbGF1fZQoaAZoCWgPQwgtBaT9zw9wQJSGlFKUaBVNNgFoFkdAkd+RoAXEZXV9lChoBmgJaA9DCN4f71XrTHJAlIaUUpRoFU06AWgWR0CR35w482aVdX2UKGgGaAloD0MICB10CQdfcECUhpRSlGgVTQIBaBZHQJH5T+ERJ3B1fZQoaAZoCWgPQwiGONbFrdpwQJSGlFKUaBVNDQFoFkdAkfqQDFId2nV9lChoBmgJaA9DCDJaR1UTFEZAlIaUUpRoFUvgaBZHQJH7PUvwmVt1fZQoaAZoCWgPQwjptkQu+CtwQJSGlFKUaBVNJwFoFkdAkfvwZn+Q2nV9lChoBmgJaA9DCLx0kxgEm29AlIaUUpRoFU1lAWgWR0CR/gj0+TvBdX2UKGgGaAloD0MIPL69axCQckCUhpRSlGgVTSkBaBZHQJH/g0GeMAF1fZQoaAZoCWgPQwgfFJSilb1yQJSGlFKUaBVNEQJoFkdAkgHcrVe8f3V9lChoBmgJaA9DCDGYv0ImCXFAlIaUUpRoFU0WAWgWR0CSAqBoEjgRdX2UKGgGaAloD0MIKuJ0kq1mb0CUhpRSlGgVTUsBaBZHQJICzJyQxN91fZQoaAZoCWgPQwh2/1iITuNxQJSGlFKUaBVNIgFoFkdAkgLq+nIhhnV9lChoBmgJaA9DCBFTIokeZ3JAlIaUUpRoFU05AWgWR0CSAyU5MlC1dX2UKGgGaAloD0MIqi11kFc3bkCUhpRSlGgVTQMBaBZHQJIDQl8gIQh1fZQoaAZoCWgPQwh2xYzwtppwQJSGlFKUaBVNKgFoFkdAkgNrvkRzzXV9lChoBmgJaA9DCJ268lneD3FAlIaUUpRoFU2JAWgWR0CSBg/nnuAqdX2UKGgGaAloD0MIrHMMyJ4VcECUhpRSlGgVTT0BaBZHQJIGhtix3V11fZQoaAZoCWgPQwjg2LPn8pdxQJSGlFKUaBVNKwFoFkdAkgaZVXFLnXV9lChoBmgJaA9DCGsPe6GAyW1AlIaUUpRoFU0HAWgWR0CSCAljVhCudX2UKGgGaAloD0MI4/viUpWicECUhpRSlGgVTVgBaBZHQJII4BCD28J1fZQoaAZoCWgPQwjqPZXT3ntwQJSGlFKUaBVNJAFoFkdAkgpni3ocJnV9lChoBmgJaA9DCLqj/+VaO3FAlIaUUpRoFU0QAWgWR0CSC6g3cYZVdX2UKGgGaAloD0MI2EenrvxSckCUhpRSlGgVTQsBaBZHQJIMIV6/qPh1fZQoaAZoCWgPQwgwuycPi41uQJSGlFKUaBVNIAFoFkdAkg0CpeeFtnV9lChoBmgJaA9DCFewjXhyaXBAlIaUUpRoFU0oAWgWR0CSDcA2Q4jsdX2UKGgGaAloD0MItKz7x0KqcUCUhpRSlGgVTTABaBZHQJIOMrJ8v251fZQoaAZoCWgPQwiPF9LhoUxwQJSGlFKUaBVNnANoFkdAkg49eQdS23V9lChoBmgJaA9DCG+df7ss63FAlIaUUpRoFU1cAWgWR0CSD1xn3+MqdX2UKGgGaAloD0MI/KpcqHzFb0CUhpRSlGgVTWMBaBZHQJIPZb4agmJ1fZQoaAZoCWgPQwj5TPbPU+hsQJSGlFKUaBVNAgFoFkdAkg+JKzzErHV9lChoBmgJaA9DCP4mFCLghnBAlIaUUpRoFU0SAWgWR0CSD6Z3cHnmdX2UKGgGaAloD0MIMQxYcpXUYkCUhpRSlGgVTegDaBZHQJIPwdLg4wR1fZQoaAZoCWgPQwjLTGn9LYxxQJSGlFKUaBVNCgFoFkdAkhDG/vfCRHV9lChoBmgJaA9DCAw89x4uITxAlIaUUpRoFUvVaBZHQJIRJIClrM11fZQoaAZoCWgPQwhqv7UTpdhwQJSGlFKUaBVNAwFoFkdAkhE3Rw6ySnV9lChoBmgJaA9DCKXXZmMlaVFAlIaUUpRoFUvSaBZHQJIR9PxhDw91fZQoaAZoCWgPQwgfMA+ZsvNyQJSGlFKUaBVNbwFoFkdAkhJOGCZnc3V9lChoBmgJaA9DCCbfbHNjJHFAlIaUUpRoFU0OA2gWR0CSErxkNFz/dX2UKGgGaAloD0MI+u5WluiacECUhpRSlGgVS/loFkdAkhUj0QK8c3V9lChoBmgJaA9DCNJvXwdOTHFAlIaUUpRoFU0TAWgWR0CSFZ0J4SpSdX2UKGgGaAloD0MI+FW5UPlZbkCUhpRSlGgVTQMBaBZHQJIW2uGKyfN1fZQoaAZoCWgPQwjiAWVTbktwQJSGlFKUaBVNSgFoFkdAkhbu3QUpNXV9lChoBmgJaA9DCHtntFWJAHBAlIaUUpRoFU0MAWgWR0CSFzvZh8YydX2UKGgGaAloD0MINNjUeRTOckCUhpRSlGgVTRkBaBZHQJIX4SIxgzB1fZQoaAZoCWgPQwiEg72JIUxyQJSGlFKUaBVNJAFoFkdAkhhvs7dSEXV9lChoBmgJaA9DCOgTeZI0aHFAlIaUUpRoFU08AWgWR0CSGbvC/GlzdX2UKGgGaAloD0MIW5iFdo7+cECUhpRSlGgVTSYBaBZHQJIa4+u/1xt1fZQoaAZoCWgPQwgd5PVgUl9tQJSGlFKUaBVL+mgWR0CSGwALApKBdX2UKGgGaAloD0MIi6VIvhJdcUCUhpRSlGgVTYsBaBZHQJIbVt78ejp1fZQoaAZoCWgPQwioixTKwlptQJSGlFKUaBVNMAFoFkdAkhxHEVFhHHV9lChoBmgJaA9DCJzEILDyh3FAlIaUUpRoFU0QAWgWR0CSHY5rxiG4dX2UKGgGaAloD0MIYk7QJgdLcECUhpRSlGgVTSkBaBZHQJId/jin5zp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd4f27c0a60eb37d6455cce8c3c8ce5ee0176900078b167c29649a1b9635b724
3
+ size 147421
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6444cb2d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6444cb2dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6444cb2e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6444cb2ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6444cb2f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6444cb6040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6444cb60d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6444cb6160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6444cb61f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6444cb6280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6444cb6310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6444cb63a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f6444cb3c00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1680515797101568509,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKCMF76ULOE+rncnPe1khr7Vv9W8ztC2PAAAAAAAAAAAGhJWPYIWsj+LSt8+eXFZvtG5hzz+sDg+AAAAAAAAAABmx8E8VHGmPlC3Lr3qWma+f4uHuyKbez0AAAAAAAAAAKatfb75wRk/UdBBPgMiSL7Loo29tAUMPgAAAAAAAAAAmjMpvGi+rz/+oKu+l4YWv9/VwDtdyrS7AAAAAAAAAAAz+yc8ewavugZgIrPCmXqwqhWYud5GwzMAAIA/AACAP5pjdz7Ifpc/YiaAPgKPyL4BM2c+rTf6PAAAAAAAAAAAM62pPMcFTz5y6ra9pudQvqP0ob17rvw8AAAAAAAAAABKnKw+f1qFP9NTnD4Z0vK+eIKaPmuSpbsAAAAAAAAAAJNBJL5A84Y+0+88PnImAr53Blm8hAaWPAAAAAAAAAAAmskXO8//WD+yleQ7hJ2WvrPF4jxor5a8AAAAAAAAAACaPze+yCmEPweunr60ZMW+teaevmrq3L0AAAAAAAAAAC3aQT7wnyI/A8R6vH39lr5h5rU9gPYnvQAAAAAAAAAAGmiyvXvuhLp/lBs7nHNdN7wbsDoMJkq6AACAPwAAAAAajio9kr/zPv46kD1jt5S+NEKpPREmhz0AAAAAAAAAAGahiDwUs8m8kGIXvu+J3b2s9ws+9TL+PgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIz9xDwncTcUCUhpRSlIwBbJRNPgGMAXSUR0CRvV0NSZSfdX2UKGgGaAloD0MIVW03wTf5b0CUhpRSlGgVTTABaBZHQJG94EaESM91fZQoaAZoCWgPQwhfQC/cOQNvQJSGlFKUaBVNFgFoFkdAkb7Z/G2kSHV9lChoBmgJaA9DCN7Jp8c2rm9AlIaUUpRoFU1PAWgWR0CRv/1D0DlpdX2UKGgGaAloD0MIZXJqZxjmbECUhpRSlGgVTR4BaBZHQJHAjA31jAl1fZQoaAZoCWgPQwjYRGYucMJvQJSGlFKUaBVNLwFoFkdAkcD889wFT3V9lChoBmgJaA9DCANC6+HLtXFAlIaUUpRoFU1OAWgWR0CRw0eyRjjJdX2UKGgGaAloD0MImWIOgg5fcECUhpRSlGgVTRoBaBZHQJHEUOqebut1fZQoaAZoCWgPQwhXPWAesihwQJSGlFKUaBVNJgFoFkdAkcW5C0F8onV9lChoBmgJaA9DCKYnLPEAEHJAlIaUUpRoFU0iAWgWR0CRxsVNYbKidX2UKGgGaAloD0MIFjJXBtWxa0CUhpRSlGgVTa4BaBZHQJHHJqVQhwF1fZQoaAZoCWgPQwiGBIwu72FsQJSGlFKUaBVNGQFoFkdAkcgGnXNC7nV9lChoBmgJaA9DCLsqUIsBsXFAlIaUUpRoFU3RAWgWR0CRyPm/WUbDdX2UKGgGaAloD0MIKBB2itXTbUCUhpRSlGgVTUgBaBZHQJHKrMqz7dl1fZQoaAZoCWgPQwiBr+jWK+FwQJSGlFKUaBVNZwFoFkdAkctKLOzIFXV9lChoBmgJaA9DCE34pX7eVnJAlIaUUpRoFU23AWgWR0CRy+4zabnYdX2UKGgGaAloD0MIDaoNTkR5bkCUhpRSlGgVTRIBaBZHQJHL+clPact1fZQoaAZoCWgPQwilEMglDvdvQJSGlFKUaBVNMQFoFkdAkcwPqC6H03V9lChoBmgJaA9DCNHP1OvW2HBAlIaUUpRoFU0hAWgWR0CRzA5PuXu3dX2UKGgGaAloD0MIpddmY2XfcUCUhpRSlGgVTXYBaBZHQJHNRwaR6nl1fZQoaAZoCWgPQwibdFsiF1tRQJSGlFKUaBVLqGgWR0CRzXFspG4JdX2UKGgGaAloD0MIsRTJVwKNbkCUhpRSlGgVTTABaBZHQJHPDSlWOp91fZQoaAZoCWgPQwh+N92yQz9wQJSGlFKUaBVNGQFoFkdAkc80PYnOSnV9lChoBmgJaA9DCMl1U8prj19AlIaUUpRoFU3oA2gWR0CRz7HQQcxTdX2UKGgGaAloD0MITYQNT6/BbECUhpRSlGgVTSABaBZHQJHQmFHrhR91fZQoaAZoCWgPQwhJFFrWfdRvQJSGlFKUaBVNKwFoFkdAkdIChew9q3V9lChoBmgJaA9DCKUSntCrmHFAlIaUUpRoFU1NA2gWR0CR0yzgdfb9dX2UKGgGaAloD0MIS8tIvSf0cECUhpRSlGgVTQwBaBZHQJHU/R+jM3Z1fZQoaAZoCWgPQwhzafzCq7NwQJSGlFKUaBVNDAFoFkdAkdUT+ee4C3V9lChoBmgJaA9DCFtAaD18h0FAlIaUUpRoFUvoaBZHQJHVbh1klNV1fZQoaAZoCWgPQwiN0M/U6/1uQJSGlFKUaBVNHAFoFkdAkdWT0HyEtnV9lChoBmgJaA9DCEATYcNThXFAlIaUUpRoFU03AWgWR0CR1f1BMSK4dX2UKGgGaAloD0MIpu7KLtjlcUCUhpRSlGgVTYIBaBZHQJHV/a/RE4N1fZQoaAZoCWgPQwhvRs1XyUdwQJSGlFKUaBVNTAFoFkdAkdY3GGVRk3V9lChoBmgJaA9DCFU01v6OUnBAlIaUUpRoFU0uAWgWR0CR1kykKu0UdX2UKGgGaAloD0MI8mH2su2VckCUhpRSlGgVTQkBaBZHQJHWYuUUwi91fZQoaAZoCWgPQwj4TzdQYGBvQJSGlFKUaBVNnwFoFkdAkddEzTF2m3V9lChoBmgJaA9DCE7VPbK5o29AlIaUUpRoFU0lAWgWR0CR2HMI/qxDdX2UKGgGaAloD0MIurw5XCv9bECUhpRSlGgVTS4BaBZHQJHZETufEn91fZQoaAZoCWgPQwgg1EUKpetwQJSGlFKUaBVNSgFoFkdAkdlKuOjqOnV9lChoBmgJaA9DCA4SonzBQHJAlIaUUpRoFU0fAWgWR0CR2WhWYF7ldX2UKGgGaAloD0MI0/pbArBrcUCUhpRSlGgVTQMBaBZHQJHar9m6Gxl1fZQoaAZoCWgPQwif46PFmWBxQJSGlFKUaBVNTwFoFkdAkdv6HXVbzXV9lChoBmgJaA9DCCO6Z11jXnJAlIaUUpRoFU0aAWgWR0CR3Y29tdiVdX2UKGgGaAloD0MIX9Gt17TjcECUhpRSlGgVTUIBaBZHQJHer9gnc+J1fZQoaAZoCWgPQwjzA1d5wnxzQJSGlFKUaBVNLgFoFkdAkd7Y+r2g4HV9lChoBmgJaA9DCPYjRWRYkmpAlIaUUpRoFU0qAWgWR0CR3zi8WbgCdX2UKGgGaAloD0MIb2b0o6E5cUCUhpRSlGgVTUoBaBZHQJHfYcghbGF1fZQoaAZoCWgPQwgtBaT9zw9wQJSGlFKUaBVNNgFoFkdAkd+RoAXEZXV9lChoBmgJaA9DCN4f71XrTHJAlIaUUpRoFU06AWgWR0CR35w482aVdX2UKGgGaAloD0MICB10CQdfcECUhpRSlGgVTQIBaBZHQJH5T+ERJ3B1fZQoaAZoCWgPQwiGONbFrdpwQJSGlFKUaBVNDQFoFkdAkfqQDFId2nV9lChoBmgJaA9DCDJaR1UTFEZAlIaUUpRoFUvgaBZHQJH7PUvwmVt1fZQoaAZoCWgPQwjptkQu+CtwQJSGlFKUaBVNJwFoFkdAkfvwZn+Q2nV9lChoBmgJaA9DCLx0kxgEm29AlIaUUpRoFU1lAWgWR0CR/gj0+TvBdX2UKGgGaAloD0MIPL69axCQckCUhpRSlGgVTSkBaBZHQJH/g0GeMAF1fZQoaAZoCWgPQwgfFJSilb1yQJSGlFKUaBVNEQJoFkdAkgHcrVe8f3V9lChoBmgJaA9DCDGYv0ImCXFAlIaUUpRoFU0WAWgWR0CSAqBoEjgRdX2UKGgGaAloD0MIKuJ0kq1mb0CUhpRSlGgVTUsBaBZHQJICzJyQxN91fZQoaAZoCWgPQwh2/1iITuNxQJSGlFKUaBVNIgFoFkdAkgLq+nIhhnV9lChoBmgJaA9DCBFTIokeZ3JAlIaUUpRoFU05AWgWR0CSAyU5MlC1dX2UKGgGaAloD0MIqi11kFc3bkCUhpRSlGgVTQMBaBZHQJIDQl8gIQh1fZQoaAZoCWgPQwh2xYzwtppwQJSGlFKUaBVNKgFoFkdAkgNrvkRzzXV9lChoBmgJaA9DCJ268lneD3FAlIaUUpRoFU2JAWgWR0CSBg/nnuAqdX2UKGgGaAloD0MIrHMMyJ4VcECUhpRSlGgVTT0BaBZHQJIGhtix3V11fZQoaAZoCWgPQwjg2LPn8pdxQJSGlFKUaBVNKwFoFkdAkgaZVXFLnXV9lChoBmgJaA9DCGsPe6GAyW1AlIaUUpRoFU0HAWgWR0CSCAljVhCudX2UKGgGaAloD0MI4/viUpWicECUhpRSlGgVTVgBaBZHQJII4BCD28J1fZQoaAZoCWgPQwjqPZXT3ntwQJSGlFKUaBVNJAFoFkdAkgpni3ocJnV9lChoBmgJaA9DCLqj/+VaO3FAlIaUUpRoFU0QAWgWR0CSC6g3cYZVdX2UKGgGaAloD0MI2EenrvxSckCUhpRSlGgVTQsBaBZHQJIMIV6/qPh1fZQoaAZoCWgPQwgwuycPi41uQJSGlFKUaBVNIAFoFkdAkg0CpeeFtnV9lChoBmgJaA9DCFewjXhyaXBAlIaUUpRoFU0oAWgWR0CSDcA2Q4jsdX2UKGgGaAloD0MItKz7x0KqcUCUhpRSlGgVTTABaBZHQJIOMrJ8v251fZQoaAZoCWgPQwiPF9LhoUxwQJSGlFKUaBVNnANoFkdAkg49eQdS23V9lChoBmgJaA9DCG+df7ss63FAlIaUUpRoFU1cAWgWR0CSD1xn3+MqdX2UKGgGaAloD0MI/KpcqHzFb0CUhpRSlGgVTWMBaBZHQJIPZb4agmJ1fZQoaAZoCWgPQwj5TPbPU+hsQJSGlFKUaBVNAgFoFkdAkg+JKzzErHV9lChoBmgJaA9DCP4mFCLghnBAlIaUUpRoFU0SAWgWR0CSD6Z3cHnmdX2UKGgGaAloD0MIMQxYcpXUYkCUhpRSlGgVTegDaBZHQJIPwdLg4wR1fZQoaAZoCWgPQwjLTGn9LYxxQJSGlFKUaBVNCgFoFkdAkhDG/vfCRHV9lChoBmgJaA9DCAw89x4uITxAlIaUUpRoFUvVaBZHQJIRJIClrM11fZQoaAZoCWgPQwhqv7UTpdhwQJSGlFKUaBVNAwFoFkdAkhE3Rw6ySnV9lChoBmgJaA9DCKXXZmMlaVFAlIaUUpRoFUvSaBZHQJIR9PxhDw91fZQoaAZoCWgPQwgfMA+ZsvNyQJSGlFKUaBVNbwFoFkdAkhJOGCZnc3V9lChoBmgJaA9DCCbfbHNjJHFAlIaUUpRoFU0OA2gWR0CSErxkNFz/dX2UKGgGaAloD0MI+u5WluiacECUhpRSlGgVS/loFkdAkhUj0QK8c3V9lChoBmgJaA9DCNJvXwdOTHFAlIaUUpRoFU0TAWgWR0CSFZ0J4SpSdX2UKGgGaAloD0MI+FW5UPlZbkCUhpRSlGgVTQMBaBZHQJIW2uGKyfN1fZQoaAZoCWgPQwjiAWVTbktwQJSGlFKUaBVNSgFoFkdAkhbu3QUpNXV9lChoBmgJaA9DCHtntFWJAHBAlIaUUpRoFU0MAWgWR0CSFzvZh8YydX2UKGgGaAloD0MINNjUeRTOckCUhpRSlGgVTRkBaBZHQJIX4SIxgzB1fZQoaAZoCWgPQwiEg72JIUxyQJSGlFKUaBVNJAFoFkdAkhhvs7dSEXV9lChoBmgJaA9DCOgTeZI0aHFAlIaUUpRoFU08AWgWR0CSGbvC/GlzdX2UKGgGaAloD0MIW5iFdo7+cECUhpRSlGgVTSYBaBZHQJIa4+u/1xt1fZQoaAZoCWgPQwgd5PVgUl9tQJSGlFKUaBVL+mgWR0CSGwALApKBdX2UKGgGaAloD0MIi6VIvhJdcUCUhpRSlGgVTYsBaBZHQJIbVt78ejp1fZQoaAZoCWgPQwioixTKwlptQJSGlFKUaBVNMAFoFkdAkhxHEVFhHHV9lChoBmgJaA9DCJzEILDyh3FAlIaUUpRoFU0QAWgWR0CSHY5rxiG4dX2UKGgGaAloD0MIYk7QJgdLcECUhpRSlGgVTSkBaBZHQJId/jin5zp1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75e6e4e18e747e6ca7b4f7412758f904e9fd59a93ebdaf31a0cb05717f9441bb
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1dfe6d195c39c7be20f3329299281f37b93e1f8b2d6d36a9f5a4c7b283533d27
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (205 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 251.06255214431286, "std_reward": 13.112988675003804, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-03T10:16:37.140413"}