kaliputra commited on
Commit
bd7de80
·
1 Parent(s): 7a899ff

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1686.28 +/- 119.63
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ece6e9876440967c749aa8f6b31172cc0ea16c8af18c50e8c816d45664fedaf
3
+ size 129270
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0fd1081940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0fd10819d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0fd1081a60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0fd1081af0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0fd1081b80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0fd1081c10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0fd1081ca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0fd1081d30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0fd1081dc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0fd1081e50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0fd1081ee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0fd1081f70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f0fd1086500>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 1119880,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678802183505680139,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOASTz+Fi96+NGP5PuDIKUCrsCk/J6YBvqfxFb/F+e89tpw8P46oHL8YCxy/fCX8PGGUUb611/w/zIA3vpTNDz55WIU/GHdJQA99S7+NCHO+AtYBvqqvgb+dP38/3TL6PgMTjr93e/W/NGgJwL/Nq78kQHu+02tmvzF3bj6WlaM/6WV+v2nnvD6XbLS+vXiTPp6ZYj8z3zC9MGxSvsU/Q7/mVZi/jxh5vyOW8D6OCJm/AxerPrMgVr4Y5z2+YAzyv5gzLb+nkaq9LnAkvZP6EkDSo2Y/d3v1vzRoCcC/zau/nvmdPY/aCr+j3OM+SXgHQJm+Ab2YdsU/psyivmm+Ir+cVAI/Z4ZiP3CVBD9U4b8+IQeSvliykb9aqxs/sNS1PF9N4j76fsS/5yM4PoITqz6b+8a+L1uSPl58DL8WfsE90qNmP3d79b9Tee4+v82rv3ZQBD9zCA8/kN3lPufTDkCpocE/kT/2vqOkEL/HvT2/mZJ0PGc/A7/ZRAq/x60bv/+tuT73OMA++OccP68D/LwUZCk/ITJpv9R/rr7QjA4+p4trv6E4vj6k9o4/5gdHvwMTjr/yewU/U3nuPrO6Pj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACeh3E2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJyI4vQAAAACdPeO/AAAAAITy1r0AAAAAIo31PwAAAACQaKk9AAAAAGVJ4T8AAAAAbNgLvgAAAADyTPO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOMXYNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJPEDL4AAAAAHwnnvwAAAADxP0U9AAAAAFwk4j8AAAAAbV/yPQAAAADkNPA/AAAAABaZ5jwAAAAAYWz7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIyzYzQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAIBGw9AAAAANKgAMAAAAAAipVMPQAAAABdEOk/AAAAAFW9C70AAAAAaT//PwAAAABP7U+9AAAAAEMI/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEoAs1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAktfUvAAAAADwUum/AAAAAAFV9roAAAAAKh7iPwAAAAAH+le8AAAAAEUO2j8AAAAAYqlPvAAAAADHzOW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.440064,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJY3cLThHb2MAWyUTegDjAF0lEdAm5GFPSDyv3V9lChoBkdAl5u5S75EdGgHTegDaAhHQJuWvtnf2sd1fZQoaAZHQJgi6Pn0TURoB03oA2gIR0CbmuRV6u4gdX2UKGgGR0CXCXMEzO5baAdN6ANoCEdAm6PkLc9GJHV9lChoBkdAlO6NoBaLXWgHTegDaAhHQJusm3KB/Zx1fZQoaAZHQJc+GHvc8DBoB03oA2gIR0CbtMqwyIpIdX2UKGgGR0CWLaH0se4kaAdN6ANoCEdAm7np0r9VFXV9lChoBkdAlvJHeizsyGgHTegDaAhHQJvCdTJhfBx1fZQoaAZHQInEVYyO7xxoB03oA2gIR0CbyKU6xPfsdX2UKGgGR0CUSO6bONYKaAdN6ANoCEdAm83mtdRiw3V9lChoBkdAk7s+vyLAHmgHTegDaAhHQJvSARFqi491fZQoaAZHQJaw5UBGQS1oB03oA2gIR0Cb2kHKfWc0dX2UKGgGR0CT+CtVrAP/aAdN6ANoCEdAm+BHb7CSBHV9lChoBkdAlQ9bwWnCO2gHTegDaAhHQJvnrFhoduJ1fZQoaAZHQJTtnvfCQ91oB03oA2gIR0Cb7ek2gnMMdX2UKGgGR0CVWyGWD6FeaAdN6ANoCEdAm/iNLL6k7HV9lChoBkdAlltRLCemN2gHTegDaAhHQJv+gldC3PR1fZQoaAZHQJZIW1OTJQtoB03oA2gIR0CcA/PV/c33dX2UKGgGR0CVNGTlkpZwaAdN6ANoCEdAnAgRUvPC23V9lChoBkdAlanlUADJVGgHTegDaAhHQJwQZg/keZJ1fZQoaAZHQJie1C1JDmdoB03oA2gIR0CcFo5hz/6wdX2UKGgGR0CWFblGwzLwaAdN6ANoCEdAnBvaZtvXLHV9lChoBkdAllj2CI1tO2gHTegDaAhHQJwhllTWGyp1fZQoaAZHQJSi/BWPtD5oB03oA2gIR0CcLqTwUg0TdX2UKGgGR0CU/88baRISaAdN6ANoCEdAnDWPNVzZH3V9lChoBkdAlTdVQ/HHWGgHTegDaAhHQJw6uoFV1fV1fZQoaAZHQJW2Z1vES/VoB03oA2gIR0CcPsrFOwgUdX2UKGgGR0CXSoJUYKplaAdN6ANoCEdAnEcdvXK8tnV9lChoBkdAk5oV94NZvGgHTegDaAhHQJxNQBFNL151fZQoaAZHQJXigUGmk31oB03oA2gIR0CcUopAD7qIdX2UKGgGR0CVRlXZ5AyEaAdN6ANoCEdAnFa1nmJWNnV9lChoBkdAldclklNUO2gHTegDaAhHQJxiBAUtZmt1fZQoaAZHQJQrGmpEQXhoB03oA2gIR0Ccayx0MgEEdX2UKGgGR0CV5NDtw71aaAdN6ANoCEdAnHEJn6Eal3V9lChoBkdAkRKGKyfL92gHTegDaAhHQJx1Cl9Brvd1fZQoaAZHQJCaKaBqbjNoB03oA2gIR0CcfXi0v4/NdX2UKGgGR0CWFym4y44IaAdN6ANoCEdAnIOEkWykbnV9lChoBkdAmh4nzxwyZmgHTegDaAhHQJyIm+pOvdN1fZQoaAZHQJWOGNyYG+toB03oA2gIR0CcjL3uNPxhdX2UKGgGR0CXY952yLQ5aAdN6ANoCEdAnJV9AxBVuXV9lChoBkdAlFTv2f02+GgHTegDaAhHQJyeYP4EfT11fZQoaAZHQJZ61gDzRQdoB03oA2gIR0Ccpmi4axX5dX2UKGgGR0CXo6q33HrAaAdN6ANoCEdAnKubSNOuaHV9lChoBkdAllwKKYRdyGgHTegDaAhHQJy0VrzoUzt1fZQoaAZHQJYuKois4kxoB03oA2gIR0Cculxd6cAjdX2UKGgGR0CXwG1yvLX+aAdN6ANoCEdAnL9ltbcGknV9lChoBkdAlWvJMlC1JGgHTegDaAhHQJzDh7x/d691fZQoaAZHQJMzI55qubJoB03oA2gIR0Ccy/Lmp2lmdX2UKGgGR0CR+K5c1O0taAdN6ANoCEdAnNIv0Zm7KHV9lChoBkdAk78YnKGL1mgHTegDaAhHQJzZpMGorFx1fZQoaAZHQJLZuNrCWNZoB03oA2gIR0Cc4AoM8YAKdX2UKGgGR0CWx1iJO32FaAdN6ANoCEdAnOq7gwXZXnV9lChoBkdAlIzEYO2AoWgHTegDaAhHQJzwp5prULF1fZQoaAZHQJHISrNnoPloB03oA2gIR0Cc9crwOOKgdX2UKGgGR0CUQgF1SwW4aAdN6ANoCEdAnPm3vUjLS3V9lChoBkdAkwxvAj6eoWgHTegDaAhHQJ0CCy0KJEZ1fZQoaAZHQJS1sSVW0Z5oB03oA2gIR0CdB+3cHnlodX2UKGgGR0CTZLLidat+aAdN6ANoCEdAnQ1KwpvxY3V9lChoBkdAlguaUaAFxGgHTegDaAhHQJ0Sfu5SWJJ1fZQoaAZHQJPxXLKV6eJoB03oA2gIR0CdH0EM9bHIdX2UKGgGR0CWCtbx3FDOaAdN6ANoCEdAnSZ5zT4L1HV9lChoBkdAlM3XpnpSrGgHTegDaAhHQJ0rhQtSQ5p1fZQoaAZHQJUoIzGgi/xoB03oA2gIR0CdL4Pq9oN/dX2UKGgGR0CVCIYTTOPeaAdN6ANoCEdAnTgxjOLR8nV9lChoBkdAkzyrVWjoIWgHTegDaAhHQJ0+UL5RCQd1fZQoaAZHQJbwcY+B6KNoB03oA2gIR0CdQ4BJqZc+dX2UKGgGR0CSzexGUfPpaAdN6ANoCEdAnUdkv9LpR3V9lChoBkdAlT7RnnMdLmgHTegDaAhHQJ1R1httQ9B1fZQoaAZHQJfHi7YkE9toB03oA2gIR0CdWwr3TNMXdX2UKGgGR0CW+Emv4dp7aAdN6ANoCEdAnWGKEOAiFHV9lChoBkdAmAQbfDUExWgHTegDaAhHQJ1lg4xUNrl1fZQoaAZHQJY8N+OOsDJoB03oA2gIR0CdbfyAxzq9dX2UKGgGR0CVO6I5HVgAaAdN6ANoCEdAnXQAQHzH0nV9lChoBkdAlM9UM5OrQ2gHTegDaAhHQJ15RQ2uPmx1fZQoaAZHQJb0WWE9MbpoB03oA2gIR0CdfTsJIDoydX2UKGgGR0CWXK68g6ltaAdN6ANoCEdAnYWSvHLidnV9lChoBkdAlh+b7oB7u2gHTegDaAhHQJ2NcR5C4SZ1fZQoaAZHQJZoI1fmcONoB03oA2gIR0CdlW11nuiOdX2UKGgGR0CVpcfek56uaAdN6ANoCEdAnZu7iQ1aXHV9lChoBkdAk7Ub0voNeGgHTegDaAhHQJ2kfeKsMiN1fZQoaAZHQJemcTdtVJdoB03oA2gIR0CdqoSWqtHQdX2UKGgGR0CUmR+9rXUZaAdN6ANoCEdAna+pdOZb6nV9lChoBkdAlFfMWsRxtGgHTegDaAhHQJ2zsSvkill1fZQoaAZHQJTa1ew9q1xoB03oA2gIR0CdvAXzlLezdX2UKGgGR0CXx4yE+PilaAdN6ANoCEdAncIpqEeyRnV9lChoBkdAlZDm+49X92gHTegDaAhHQJ3IyFnIyTJ1fZQoaAZHQJWodyhi9ZloB03oA2gIR0CdztIPsiSrdX2UKGgGR0CU1ihsZYPoaAdN6ANoCEdAndrR3zMA3nV9lChoBkdAlyBbVe8f3mgHTegDaAhHQJ3gx5nlGPR1fZQoaAZHQJdKjboKUmloB03oA2gIR0Cd5gr+HaexdX2UKGgGR0CV600jkdWAaAdN6ANoCEdAnenxiw0O3HV9lChoBkdAlcn7V4HHFWgHTegDaAhHQJ3yai7Ciyp1fZQoaAZHQJXcFrXUYsNoB03oA2gIR0Cd+F9d/rjYdX2UKGgGR0CX9bRWLgn/aAdN6ANoCEdAnf3QJswcpHV9lChoBkdAmCdUZiuuBGgHTegDaAhHQJ4Cf6UJOWV1fZQoaAZHQJa+eFev6j5oB03oA2gIR0CeDtx/ustDdX2UKGgGR0CXY8lByCFsaAdN6ANoCEdAnhcWQ0XP7nV9lChoBkdAmIPuMQ2/BWgHTegDaAhHQJ4cRmHxjKB1fZQoaAZHQJZ2+qEOAiFoB03oA2gIR0CeIE2zfJmvdX2UKGgGR0Cac0U2DQJHaAdN6ANoCEdAniiNbX6InHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 34996,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:818e93ba34a9ac504f2da56a0fef7e04c9ee3dc2d14203a6dff69c4228095067
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3146c5d006f4f8a912c9aa498d5b7d2464801f8c995afeb1eec6b728733b9186
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0fd1081940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0fd10819d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0fd1081a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0fd1081af0>", "_build": "<function ActorCriticPolicy._build at 0x7f0fd1081b80>", "forward": "<function ActorCriticPolicy.forward at 0x7f0fd1081c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0fd1081ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0fd1081d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0fd1081dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0fd1081e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0fd1081ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0fd1081f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0fd1086500>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1119880, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678802183505680139, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOASTz+Fi96+NGP5PuDIKUCrsCk/J6YBvqfxFb/F+e89tpw8P46oHL8YCxy/fCX8PGGUUb611/w/zIA3vpTNDz55WIU/GHdJQA99S7+NCHO+AtYBvqqvgb+dP38/3TL6PgMTjr93e/W/NGgJwL/Nq78kQHu+02tmvzF3bj6WlaM/6WV+v2nnvD6XbLS+vXiTPp6ZYj8z3zC9MGxSvsU/Q7/mVZi/jxh5vyOW8D6OCJm/AxerPrMgVr4Y5z2+YAzyv5gzLb+nkaq9LnAkvZP6EkDSo2Y/d3v1vzRoCcC/zau/nvmdPY/aCr+j3OM+SXgHQJm+Ab2YdsU/psyivmm+Ir+cVAI/Z4ZiP3CVBD9U4b8+IQeSvliykb9aqxs/sNS1PF9N4j76fsS/5yM4PoITqz6b+8a+L1uSPl58DL8WfsE90qNmP3d79b9Tee4+v82rv3ZQBD9zCA8/kN3lPufTDkCpocE/kT/2vqOkEL/HvT2/mZJ0PGc/A7/ZRAq/x60bv/+tuT73OMA++OccP68D/LwUZCk/ITJpv9R/rr7QjA4+p4trv6E4vj6k9o4/5gdHvwMTjr/yewU/U3nuPrO6Pj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACeh3E2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJyI4vQAAAACdPeO/AAAAAITy1r0AAAAAIo31PwAAAACQaKk9AAAAAGVJ4T8AAAAAbNgLvgAAAADyTPO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOMXYNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJPEDL4AAAAAHwnnvwAAAADxP0U9AAAAAFwk4j8AAAAAbV/yPQAAAADkNPA/AAAAABaZ5jwAAAAAYWz7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIyzYzQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAIBGw9AAAAANKgAMAAAAAAipVMPQAAAABdEOk/AAAAAFW9C70AAAAAaT//PwAAAABP7U+9AAAAAEMI/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEoAs1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAktfUvAAAAADwUum/AAAAAAFV9roAAAAAKh7iPwAAAAAH+le8AAAAAEUO2j8AAAAAYqlPvAAAAADHzOW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.440064, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJY3cLThHb2MAWyUTegDjAF0lEdAm5GFPSDyv3V9lChoBkdAl5u5S75EdGgHTegDaAhHQJuWvtnf2sd1fZQoaAZHQJgi6Pn0TURoB03oA2gIR0CbmuRV6u4gdX2UKGgGR0CXCXMEzO5baAdN6ANoCEdAm6PkLc9GJHV9lChoBkdAlO6NoBaLXWgHTegDaAhHQJusm3KB/Zx1fZQoaAZHQJc+GHvc8DBoB03oA2gIR0CbtMqwyIpIdX2UKGgGR0CWLaH0se4kaAdN6ANoCEdAm7np0r9VFXV9lChoBkdAlvJHeizsyGgHTegDaAhHQJvCdTJhfBx1fZQoaAZHQInEVYyO7xxoB03oA2gIR0CbyKU6xPfsdX2UKGgGR0CUSO6bONYKaAdN6ANoCEdAm83mtdRiw3V9lChoBkdAk7s+vyLAHmgHTegDaAhHQJvSARFqi491fZQoaAZHQJaw5UBGQS1oB03oA2gIR0Cb2kHKfWc0dX2UKGgGR0CT+CtVrAP/aAdN6ANoCEdAm+BHb7CSBHV9lChoBkdAlQ9bwWnCO2gHTegDaAhHQJvnrFhoduJ1fZQoaAZHQJTtnvfCQ91oB03oA2gIR0Cb7ek2gnMMdX2UKGgGR0CVWyGWD6FeaAdN6ANoCEdAm/iNLL6k7HV9lChoBkdAlltRLCemN2gHTegDaAhHQJv+gldC3PR1fZQoaAZHQJZIW1OTJQtoB03oA2gIR0CcA/PV/c33dX2UKGgGR0CVNGTlkpZwaAdN6ANoCEdAnAgRUvPC23V9lChoBkdAlanlUADJVGgHTegDaAhHQJwQZg/keZJ1fZQoaAZHQJie1C1JDmdoB03oA2gIR0CcFo5hz/6wdX2UKGgGR0CWFblGwzLwaAdN6ANoCEdAnBvaZtvXLHV9lChoBkdAllj2CI1tO2gHTegDaAhHQJwhllTWGyp1fZQoaAZHQJSi/BWPtD5oB03oA2gIR0CcLqTwUg0TdX2UKGgGR0CU/88baRISaAdN6ANoCEdAnDWPNVzZH3V9lChoBkdAlTdVQ/HHWGgHTegDaAhHQJw6uoFV1fV1fZQoaAZHQJW2Z1vES/VoB03oA2gIR0CcPsrFOwgUdX2UKGgGR0CXSoJUYKplaAdN6ANoCEdAnEcdvXK8tnV9lChoBkdAk5oV94NZvGgHTegDaAhHQJxNQBFNL151fZQoaAZHQJXigUGmk31oB03oA2gIR0CcUopAD7qIdX2UKGgGR0CVRlXZ5AyEaAdN6ANoCEdAnFa1nmJWNnV9lChoBkdAldclklNUO2gHTegDaAhHQJxiBAUtZmt1fZQoaAZHQJQrGmpEQXhoB03oA2gIR0Ccayx0MgEEdX2UKGgGR0CV5NDtw71aaAdN6ANoCEdAnHEJn6Eal3V9lChoBkdAkRKGKyfL92gHTegDaAhHQJx1Cl9Brvd1fZQoaAZHQJCaKaBqbjNoB03oA2gIR0CcfXi0v4/NdX2UKGgGR0CWFym4y44IaAdN6ANoCEdAnIOEkWykbnV9lChoBkdAmh4nzxwyZmgHTegDaAhHQJyIm+pOvdN1fZQoaAZHQJWOGNyYG+toB03oA2gIR0CcjL3uNPxhdX2UKGgGR0CXY952yLQ5aAdN6ANoCEdAnJV9AxBVuXV9lChoBkdAlFTv2f02+GgHTegDaAhHQJyeYP4EfT11fZQoaAZHQJZ61gDzRQdoB03oA2gIR0Ccpmi4axX5dX2UKGgGR0CXo6q33HrAaAdN6ANoCEdAnKubSNOuaHV9lChoBkdAllwKKYRdyGgHTegDaAhHQJy0VrzoUzt1fZQoaAZHQJYuKois4kxoB03oA2gIR0Cculxd6cAjdX2UKGgGR0CXwG1yvLX+aAdN6ANoCEdAnL9ltbcGknV9lChoBkdAlWvJMlC1JGgHTegDaAhHQJzDh7x/d691fZQoaAZHQJMzI55qubJoB03oA2gIR0Ccy/Lmp2lmdX2UKGgGR0CR+K5c1O0taAdN6ANoCEdAnNIv0Zm7KHV9lChoBkdAk78YnKGL1mgHTegDaAhHQJzZpMGorFx1fZQoaAZHQJLZuNrCWNZoB03oA2gIR0Cc4AoM8YAKdX2UKGgGR0CWx1iJO32FaAdN6ANoCEdAnOq7gwXZXnV9lChoBkdAlIzEYO2AoWgHTegDaAhHQJzwp5prULF1fZQoaAZHQJHISrNnoPloB03oA2gIR0Cc9crwOOKgdX2UKGgGR0CUQgF1SwW4aAdN6ANoCEdAnPm3vUjLS3V9lChoBkdAkwxvAj6eoWgHTegDaAhHQJ0CCy0KJEZ1fZQoaAZHQJS1sSVW0Z5oB03oA2gIR0CdB+3cHnlodX2UKGgGR0CTZLLidat+aAdN6ANoCEdAnQ1KwpvxY3V9lChoBkdAlguaUaAFxGgHTegDaAhHQJ0Sfu5SWJJ1fZQoaAZHQJPxXLKV6eJoB03oA2gIR0CdH0EM9bHIdX2UKGgGR0CWCtbx3FDOaAdN6ANoCEdAnSZ5zT4L1HV9lChoBkdAlM3XpnpSrGgHTegDaAhHQJ0rhQtSQ5p1fZQoaAZHQJUoIzGgi/xoB03oA2gIR0CdL4Pq9oN/dX2UKGgGR0CVCIYTTOPeaAdN6ANoCEdAnTgxjOLR8nV9lChoBkdAkzyrVWjoIWgHTegDaAhHQJ0+UL5RCQd1fZQoaAZHQJbwcY+B6KNoB03oA2gIR0CdQ4BJqZc+dX2UKGgGR0CSzexGUfPpaAdN6ANoCEdAnUdkv9LpR3V9lChoBkdAlT7RnnMdLmgHTegDaAhHQJ1R1httQ9B1fZQoaAZHQJfHi7YkE9toB03oA2gIR0CdWwr3TNMXdX2UKGgGR0CW+Emv4dp7aAdN6ANoCEdAnWGKEOAiFHV9lChoBkdAmAQbfDUExWgHTegDaAhHQJ1lg4xUNrl1fZQoaAZHQJY8N+OOsDJoB03oA2gIR0CdbfyAxzq9dX2UKGgGR0CVO6I5HVgAaAdN6ANoCEdAnXQAQHzH0nV9lChoBkdAlM9UM5OrQ2gHTegDaAhHQJ15RQ2uPmx1fZQoaAZHQJb0WWE9MbpoB03oA2gIR0CdfTsJIDoydX2UKGgGR0CWXK68g6ltaAdN6ANoCEdAnYWSvHLidnV9lChoBkdAlh+b7oB7u2gHTegDaAhHQJ2NcR5C4SZ1fZQoaAZHQJZoI1fmcONoB03oA2gIR0CdlW11nuiOdX2UKGgGR0CVpcfek56uaAdN6ANoCEdAnZu7iQ1aXHV9lChoBkdAk7Ub0voNeGgHTegDaAhHQJ2kfeKsMiN1fZQoaAZHQJemcTdtVJdoB03oA2gIR0CdqoSWqtHQdX2UKGgGR0CUmR+9rXUZaAdN6ANoCEdAna+pdOZb6nV9lChoBkdAlFfMWsRxtGgHTegDaAhHQJ2zsSvkill1fZQoaAZHQJTa1ew9q1xoB03oA2gIR0CdvAXzlLezdX2UKGgGR0CXx4yE+PilaAdN6ANoCEdAncIpqEeyRnV9lChoBkdAlZDm+49X92gHTegDaAhHQJ3IyFnIyTJ1fZQoaAZHQJWodyhi9ZloB03oA2gIR0CdztIPsiSrdX2UKGgGR0CU1ihsZYPoaAdN6ANoCEdAndrR3zMA3nV9lChoBkdAlyBbVe8f3mgHTegDaAhHQJ3gx5nlGPR1fZQoaAZHQJdKjboKUmloB03oA2gIR0Cd5gr+HaexdX2UKGgGR0CV600jkdWAaAdN6ANoCEdAnenxiw0O3HV9lChoBkdAlcn7V4HHFWgHTegDaAhHQJ3yai7Ciyp1fZQoaAZHQJXcFrXUYsNoB03oA2gIR0Cd+F9d/rjYdX2UKGgGR0CX9bRWLgn/aAdN6ANoCEdAnf3QJswcpHV9lChoBkdAmCdUZiuuBGgHTegDaAhHQJ4Cf6UJOWV1fZQoaAZHQJa+eFev6j5oB03oA2gIR0CeDtx/ustDdX2UKGgGR0CXY8lByCFsaAdN6ANoCEdAnhcWQ0XP7nV9lChoBkdAmIPuMQ2/BWgHTegDaAhHQJ4cRmHxjKB1fZQoaAZHQJZ2+qEOAiFoB03oA2gIR0CeIE2zfJmvdX2UKGgGR0Cac0U2DQJHaAdN6ANoCEdAniiNbX6InHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 34996, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b272781987e617fd71909cad623a47dc39daf39f67b2055c209dbef32127ab35
3
+ size 1079913
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1686.2752902204434, "std_reward": 119.63131693840216, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-14T14:29:31.600040"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:815b7577e5d2d54f43e873a21dfd76c0d1d7edc273d9ab6caefd3e767024881e
3
+ size 2136