File size: 7,786 Bytes
9f606aa
74f06ca
 
 
 
 
 
9f606aa
 
74f06ca
9f606aa
74f06ca
 
9f606aa
74f06ca
9f606aa
74f06ca
9f606aa
74f06ca
 
 
 
 
9f606aa
74f06ca
9f606aa
74f06ca
 
9f606aa
74f06ca
9f606aa
74f06ca
 
 
 
 
 
9f606aa
74f06ca
 
 
 
 
9f606aa
74f06ca
9f606aa
74f06ca
 
 
 
 
9f606aa
74f06ca
9f606aa
74f06ca
 
 
 
 
9f606aa
74f06ca
9f606aa
74f06ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0d4174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
license: apache-2.0
language:
- ru
- en
base_model:
- jinaai/jina-embeddings-v3
---

## **JinaJudge: Proxy Judgement for Russian LLM Arena**

### **Description**
This model is trained to replicate the judgement patterns of GPT-4-1106-Preview in the [Russian LLM Arena](https://huggingface.co/spaces/Vikhrmodels/arenahardlb), designed for faster and more cost-effective evaluation of language models. While the model's focus is on Russian LLM evaluation, it can also be used for English-centric models.

---

### **Model Details**

This is an iterative update of [kaleinaNyan/jina-v3-rullmarena-judge-300924](https://huggingface.co/kaleinaNyan/jina-v3-rullmarena-judge-300924) model:
- Increased amount of training data (not by much, approaximately 1.5x times).
- Updated data composition to fix erroneous judgements where GPT-4 picked English responses over Russian ones.
- Validation set was updated as well to exclude such errors.
- Test set did not change (no bad judgements in that regard).

---

### **Evaluation**
The validation process was based on **existing judgements** from the Russian LLM Arena, which were already available. These judgements were filtered and simplified to match the three-class structure used in training.

NOTE: values in parenthesis show relative improvement compared to previous model.

**Models evaluated**:
- **gemma-2-9b-it-sppo-iter3**
- **glm-4-9b-chat**
- **gpt-3.5-turbo-1106**
- **mistral-7b-instruct-v0.3**
- **storm-7b**

**Validation Performance (old validation set)**:
- **Accuracy**: 79.97% (-0.78)
- **Precision**: 78.25% (-0.31)
- **Recall**: 78.25% (-1.23)
- **F1-score**: 78.25% (-0.75)

NOTE: will report later what actually caused the drop (the subset of fixed judgements or smth else)

**Validation Performance (new validation set)**:
- **Accuracy**: 83.59% (+2.48)
- **Precision**: 80.97% (+2.14)
- **Recall**: 80.97% (+1.22)
- **F1-score**: 80.97% (+1.77)

For the **test** phase, new judgements were generated using GPT-4 for the `kolibri-mistral-0427-upd` model.

**Test Performance**:
- **Accuracy**: 85.09% (+2.37)
- **Precision**: 83.20% (+3.09)
- **Recall**: 83.20% (+0.78)
- **F1-score**: 83.20% (+2.02)

---

### **Usage Example**

```python
from transformers import AutoModel

jina = AutoModel.from_pretrained("kaleinaNyan/jina-v3-rullmarena-judge-041024", trust_remote_code=True)

prompt_template = """
<user prompt>
{user_prompt}
<end>
<assistant A answer>
{assistant_a}
<end>
<assistant B answer>
{assistant_b}
<end>
""".strip()

prompt = "your prompt"
assistant_a = "assistant a response"
assistant_b = "assistant b response"

example = prompt_template.format(
    user_prompt=user_prompt,
    assistant_a=assistant_a,
    assistant_b=assistant_b,
)

judgement = jina([example])[0].argmax()

judgement_map = {
  0: "A is better than B",
  1: "A == B",
  2: "B is better than A"
}

print(judgement_map[judgement])
```

---

### **Generated ranking**

The ranking was obtained using a modified [Russian LLM Arena code](https://github.com/VikhrModels/ru_llm_arena). 
All judgements were regenerated using the jina-judge model. It takes about 16 minutes to regenerate the whole board (or 23 seconds per model) on an RTX3090.


| Model                                            | Score | 95% CI               | Average #Tokens |
|--------------------------------------------------|-------|----------------------|-----------------|
| gpt-4-1106-preview                               | 82.8  | (-2.2, 2.3)          | 541             |
| gpt-4o-mini                                      | 75.3  | (-2.5, 2.9)          | 448             |
| qwen-2.5-72b-it                                  | 73.1  | (-3.4, 3.1)          | 557             |
| gemma-2-9b-it-sppo-iter3                         | 70.6  | (-3.9, 2.8)          | 509             |
| gemma-2-27b-it                                   | 68.7  | (-2.8, 3.8)          | 472             |
| t-lite-instruct-0.1                              | 67.5  | (-3.8, 3.8)          | 810             |
| gemma-2-9b-it                                    | 67.0  | (-3.7, 3.3)          | 459             |
| suzume-llama-3-8B-multilingual-orpo-borda-half   | 62.4  | (-3.5, 3.7)          | 682             |
| glm-4-9b-chat                                    | 61.5  | (-3.7, 3.0)          | 568             |
| phi-3-medium-4k-instruct                         | 60.4  | (-3.5, 3.7)          | 566             |
| sfr-iterative-dpo-llama-3-8b-r                   | 57.2  | (-3.9, 2.2)          | 516             |
| c4ai-command-r-v01                               | 55.0  | (-3.9, 3.1)          | 529             |
| suzume-llama-3-8b-multilingual                   | 51.9  | (-2.8, 3.7)          | 641             |
| mistral-nemo-instruct-2407                       | 51.9  | (-3.8, 3.7)          | 403             |
| yandex_gpt_pro                                   | 50.3  | (-3.4, 3.1)          | 345             |
| gpt-3.5-turbo-0125                               | 50.0  | (0.0, 0.0)           | 220             |
| hermes-2-theta-llama-3-8b                        | 49.3  | (-3.4, 3.9)          | 485             |
| starling-lm-7b-beta                              | 48.3  | (-3.8, 4.0)          | 629             |
| llama-3-8b-saiga-suzume-ties                     | 47.9  | (-3.9, 5.0)          | 763             |
| llama-3-smaug-8b                                 | 47.6  | (-3.6, 3.1)          | 524             |
| vikhr-it-5.4-fp16-orpo-v2                        | 46.8  | (-2.5, 2.7)          | 379             |
| aya-23-8b                                        | 46.1  | (-3.9, 3.9)          | 554             |
| saiga_llama3_8b_v6                               | 44.8  | (-3.4, 3.3)          | 471             |
| qwen2-7b-instruct                                | 43.6  | (-3.0, 2.7)          | 340             |
| vikhr-it-5.2-fp16-cp                             | 43.6  | (-4.1, 3.3)          | 543             |
| openchat-3.5-0106                                | 42.8  | (-3.9, 3.3)          | 492             |
| kolibri-mistral-0427-upd                         | 42.3  | (-4.2, 3.2)          | 551             |
| paralex-llama-3-8b-sft                           | 41.8  | (-3.2, 3.7)          | 688             |
| llama-3-instruct-8b-sppo-iter3                   | 41.7  | (-3.4, 3.3)          | 502             |
| gpt-3.5-turbo-1106                               | 41.5  | (-2.9, 2.1)          | 191             |
| mistral-7b-instruct-v0.3                         | 41.1  | (-4.3, 3.5)          | 469             |
| gigachat_pro                                     | 40.9  | (-3.4, 3.6)          | 294             |
| openchat-3.6-8b-20240522                         | 39.1  | (-3.2, 4.1)          | 428             |
| vikhr-it-5.3-fp16-32k                            | 38.8  | (-3.5, 3.3)          | 519             |
| hermes-2-pro-llama-3-8b                          | 38.4  | (-3.2, 3.1)          | 463             |
| kolibri-vikhr-mistral-0427                       | 34.5  | (-2.9, 3.5)          | 489             |
| vikhr-it-5.3-fp16                                | 33.5  | (-3.5, 3.8)          | 523             |
| llama-3-instruct-8b-simpo                        | 32.7  | (-3.9, 3.6)          | 417             |
| meta-llama-3-8b-instruct                         | 32.1  | (-3.4, 3.3)          | 450             |
| neural-chat-7b-v3-3                              | 25.9  | (-2.7, 3.6)          | 927             |
| gigachat_lite                                    | 25.4  | (-2.8, 2.5)          | 276             |
| snorkel-mistral-pairrm-dpo                       | 10.3  | (-2.0, 2.3)          | 773             |
| storm-7b                                         |  3.7  | (-1.3, 1.6)          | 419             |