kaizen9 commited on
Commit
28bae8e
Β·
verified Β·
1 Parent(s): 3eafe9f

Delete modeling_phi_rot.py

Browse files
Files changed (1) hide show
  1. modeling_phi_rot.py +0 -1075
modeling_phi_rot.py DELETED
@@ -1,1075 +0,0 @@
1
- # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
- # This file was automatically generated from src/transformers/models/phi/modular_phi.py.
3
- # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
- # the file from the modular. If any change should be done, please apply the change to the
5
- # modular_phi.py file directly. One of our CI enforces this.
6
- # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
- from typing import Callable, List, Optional, Tuple, Union
8
-
9
- import torch
10
- import torch.nn as nn
11
-
12
- from transformers.activations import ACT2FN
13
- from transformers.cache_utils import Cache, DynamicCache, StaticCache
14
- from transformers.generation import GenerationMixin
15
- from transformers.modeling_attn_mask_utils import AttentionMaskConverter
16
- from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
17
- from transformers.modeling_outputs import (
18
- BaseModelOutputWithPast,
19
- CausalLMOutputWithPast,
20
- SequenceClassifierOutputWithPast,
21
- TokenClassifierOutput,
22
- )
23
- from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
24
- from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
25
- from transformers.processing_utils import Unpack
26
- from transformers.utils import (
27
- LossKwargs,
28
- add_code_sample_docstrings,
29
- add_start_docstrings,
30
- add_start_docstrings_to_model_forward,
31
- logging,
32
- replace_return_docstrings,
33
- )
34
- from transformers.models.phi.configuration_phi import PhiConfig
35
- from train_utils.quant_linear import QuantizeLinear
36
-
37
-
38
- logger = logging.get_logger(__name__)
39
-
40
- _CHECKPOINT_FOR_DOC = "meta-phi/Phi-2-7b-hf"
41
- _CONFIG_FOR_DOC = "PhiConfig"
42
-
43
-
44
- def rotate_half(x):
45
- """Rotates half the hidden dims of the input."""
46
- x1 = x[..., : x.shape[-1] // 2]
47
- x2 = x[..., x.shape[-1] // 2 :]
48
- return torch.cat((-x2, x1), dim=-1)
49
-
50
-
51
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
52
- """Applies Rotary Position Embedding to the query and key tensors.
53
-
54
- Args:
55
- q (`torch.Tensor`): The query tensor.
56
- k (`torch.Tensor`): The key tensor.
57
- cos (`torch.Tensor`): The cosine part of the rotary embedding.
58
- sin (`torch.Tensor`): The sine part of the rotary embedding.
59
- position_ids (`torch.Tensor`, *optional*):
60
- Deprecated and unused.
61
- unsqueeze_dim (`int`, *optional*, defaults to 1):
62
- The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
63
- sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
64
- that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
65
- k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
66
- cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
67
- the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
68
- Returns:
69
- `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
70
- """
71
- cos = cos.unsqueeze(unsqueeze_dim)
72
- sin = sin.unsqueeze(unsqueeze_dim)
73
- q_embed = (q * cos) + (rotate_half(q) * sin)
74
- k_embed = (k * cos) + (rotate_half(k) * sin)
75
- return q_embed, k_embed
76
-
77
-
78
- def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
79
- """
80
- This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
81
- num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
82
- """
83
- batch, num_key_value_heads, slen, head_dim = hidden_states.shape
84
- if n_rep == 1:
85
- return hidden_states
86
- hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
87
- return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
88
-
89
-
90
- def eager_attention_forward(
91
- module: nn.Module,
92
- query: torch.Tensor,
93
- key: torch.Tensor,
94
- value: torch.Tensor,
95
- attention_mask: Optional[torch.Tensor],
96
- scaling: float,
97
- dropout: float = 0.0,
98
- **kwargs,
99
- ):
100
- key_states = repeat_kv(key, module.num_key_value_groups)
101
- value_states = repeat_kv(value, module.num_key_value_groups)
102
-
103
- attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
104
- if attention_mask is not None:
105
- causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
106
- attn_weights = attn_weights + causal_mask
107
-
108
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
109
- attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
110
- attn_output = torch.matmul(attn_weights, value_states)
111
- attn_output = attn_output.transpose(1, 2).contiguous()
112
-
113
- return attn_output, attn_weights
114
-
115
-
116
- class PhiAttention(nn.Module):
117
- """Multi-headed attention from 'Attention Is All You Need' paper"""
118
-
119
- def __init__(self, config: PhiConfig, layer_idx: int):
120
- super().__init__()
121
- self.config = config
122
- self.layer_idx = layer_idx
123
- self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
124
- self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
125
- self.scaling = self.head_dim**-0.5
126
- self.attention_dropout = config.attention_dropout
127
- self.is_causal = True
128
- #self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
129
- #self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
130
- #self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
131
- ########MODS
132
- self.q_proj = QuantizeLinear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
133
- self.k_proj = QuantizeLinear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
134
- self.v_proj = QuantizeLinear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
135
- self.dense = QuantizeLinear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=True)
136
- self.R2 = None
137
- #####MODS
138
- self.rotary_ndims = int(self.head_dim * config.partial_rotary_factor)
139
- self.qk_layernorm = config.qk_layernorm
140
- if self.qk_layernorm:
141
- self.q_layernorm = nn.LayerNorm(
142
- config.hidden_size // config.num_attention_heads, eps=config.layer_norm_eps, elementwise_affine=True
143
- )
144
- self.k_layernorm = nn.LayerNorm(
145
- config.hidden_size // config.num_attention_heads, eps=config.layer_norm_eps, elementwise_affine=True
146
- )
147
-
148
- def forward(
149
- self,
150
- hidden_states: torch.Tensor,
151
- position_embeddings: Tuple[torch.Tensor, torch.Tensor],
152
- attention_mask: Optional[torch.Tensor],
153
- past_key_value: Optional[Cache] = None,
154
- cache_position: Optional[torch.LongTensor] = None,
155
- **kwargs,
156
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
157
- input_shape = hidden_states.shape[:-1]
158
- hidden_shape = (*input_shape, -1, self.head_dim)
159
- R1=None,
160
- query_states = self.q_proj(hidden_states, R1).view(hidden_shape).transpose(1, 2)
161
- key_states = self.k_proj(hidden_states, R1).view(hidden_shape).transpose(1, 2)
162
- value_states = self.v_proj(hidden_states, R1, R2=self.R2.weight).view(hidden_shape).transpose(1, 2)
163
-
164
- if self.qk_layernorm:
165
- query_states = self.q_layernorm(query_states)
166
- key_states = self.k_layernorm(key_states)
167
-
168
- cos, sin = position_embeddings
169
- # Partial rotary embedding
170
- query_rot, query_pass = (
171
- query_states[..., : self.rotary_ndims],
172
- query_states[..., self.rotary_ndims :],
173
- )
174
- key_rot, key_pass = (
175
- key_states[..., : self.rotary_ndims],
176
- key_states[..., self.rotary_ndims :],
177
- )
178
- # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
179
- query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin)
180
-
181
- # [batch_size, seq_length, num_heads, head_dim]
182
- query_states = torch.cat((query_rot, query_pass), dim=-1)
183
- key_states = torch.cat((key_rot, key_pass), dim=-1)
184
-
185
- if past_key_value is not None:
186
- # sin and cos are specific to RoPE models; cache_position needed for the static cache
187
- cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
188
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
189
-
190
- attention_interface: Callable = eager_attention_forward
191
- if self.config._attn_implementation != "eager":
192
- if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
193
- logger.warning_once(
194
- "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
195
- 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
196
- )
197
- else:
198
- attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
199
-
200
- attn_output, attn_weights = attention_interface(
201
- self,
202
- query_states,
203
- key_states,
204
- value_states,
205
- attention_mask,
206
- dropout=0.0 if not self.training else self.attention_dropout,
207
- scaling=self.scaling,
208
- **kwargs,
209
- )
210
-
211
- attn_output = attn_output.reshape(*input_shape, -1).contiguous()
212
- attn_output = self.dense(attn_output, R1, R2=self.R2.weight, transpose=True)
213
- return attn_output, attn_weights
214
-
215
-
216
- class PhiMLP(nn.Module):
217
- def __init__(self, config):
218
- super().__init__()
219
- self.config = config
220
- self.activation_fn = ACT2FN[config.hidden_act]
221
-
222
- #self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
223
- #self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
224
-
225
- self.fc1 = QuantizeLinear(config.hidden_size, config.intermediate_size) #up proj
226
- self.fc2 = QuantizeLinear(config.intermediate_size, config.hidden_size) #down proj
227
- '''
228
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
229
- hidden_states = self.fc1(hidden_states)
230
- hidden_states = self.activation_fn(hidden_states)
231
- hidden_states = self.fc2(hidden_states)
232
- return hidden_states
233
- '''
234
-
235
- def forward(self, hidden_states, R1):
236
- hidden_states = self.fc1(hidden_states, R1)
237
- hidden_states = self.activation_fn(hidden_states)
238
- hidden_states = self.fc2(hidden_states, R1, transpose=True)
239
-
240
-
241
- return hidden_states
242
-
243
-
244
-
245
- class PhiDecoderLayer(nn.Module):
246
- def __init__(self, config: PhiConfig, layer_idx: int):
247
- super().__init__()
248
- self.self_attn = PhiAttention(config, layer_idx=layer_idx)
249
- self.mlp = PhiMLP(config)
250
- self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
251
- self.resid_dropout = nn.Dropout(config.resid_pdrop)
252
-
253
- def forward(
254
- self,
255
- hidden_states: torch.Tensor,
256
- attention_mask: Optional[torch.Tensor] = None,
257
- position_ids: Optional[torch.LongTensor] = None,
258
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
259
- output_attentions: Optional[bool] = False,
260
- use_cache: Optional[bool] = False,
261
- cache_position: Optional[torch.LongTensor] = None,
262
- position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
263
- R1=None,
264
-
265
- **kwargs,
266
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
267
- residual = hidden_states
268
-
269
- hidden_states = self.input_layernorm(hidden_states)
270
-
271
- # Self Attention
272
- attn_outputs, self_attn_weights = self.self_attn(
273
- hidden_states=hidden_states,
274
- attention_mask=attention_mask,
275
- position_ids=position_ids,
276
- past_key_value=past_key_value,
277
- output_attentions=output_attentions,
278
- use_cache=use_cache,
279
- cache_position=cache_position,
280
- position_embeddings=position_embeddings,
281
- R1=R1,
282
-
283
- **kwargs,
284
- )
285
- attn_outputs = self.resid_dropout(attn_outputs)
286
-
287
- feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states, R1=R1))
288
- hidden_states = attn_outputs + feed_forward_hidden_states + residual
289
- outputs = (hidden_states,)
290
-
291
- if output_attentions:
292
- outputs += (self_attn_weights,)
293
-
294
- return outputs
295
-
296
-
297
- class PhiRotaryEmbedding(nn.Module):
298
- def __init__(
299
- self,
300
- config: PhiConfig,
301
- device=None,
302
- ):
303
- super().__init__()
304
- self.rope_kwargs = {}
305
- # BC: "rope_type" was originally "type"
306
- if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
307
- self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
308
- else:
309
- self.rope_type = "default"
310
- self.max_seq_len_cached = config.max_position_embeddings
311
- self.original_max_seq_len = config.max_position_embeddings
312
-
313
- self.config = config
314
- self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
315
-
316
- inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
317
- self.register_buffer("inv_freq", inv_freq, persistent=False)
318
- self.original_inv_freq = self.inv_freq
319
-
320
- def _dynamic_frequency_update(self, position_ids, device):
321
- """
322
- dynamic RoPE layers should recompute `inv_freq` in the following situations:
323
- 1 - growing beyond the cached sequence length (allow scaling)
324
- 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
325
- """
326
- seq_len = torch.max(position_ids) + 1
327
- if seq_len > self.max_seq_len_cached: # growth
328
- inv_freq, self.attention_scaling = self.rope_init_fn(
329
- self.config, device, seq_len=seq_len, **self.rope_kwargs
330
- )
331
- self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
332
- self.max_seq_len_cached = seq_len
333
-
334
- if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
335
- self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
336
- self.max_seq_len_cached = self.original_max_seq_len
337
-
338
- @torch.no_grad()
339
- def forward(self, x, position_ids):
340
- if "dynamic" in self.rope_type:
341
- self._dynamic_frequency_update(position_ids, device=x.device)
342
-
343
- # Core RoPE block
344
- inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
345
- position_ids_expanded = position_ids[:, None, :].float()
346
- # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
347
- device_type = x.device.type
348
- device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
349
- with torch.autocast(device_type=device_type, enabled=False):
350
- freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
351
- emb = torch.cat((freqs, freqs), dim=-1)
352
- cos = emb.cos()
353
- sin = emb.sin()
354
-
355
- # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
356
- cos = cos * self.attention_scaling
357
- sin = sin * self.attention_scaling
358
-
359
- return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
360
-
361
-
362
- PHI_START_DOCSTRING = r"""
363
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
364
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
365
- etc.)
366
-
367
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
368
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
369
- and behavior.
370
-
371
- Parameters:
372
- config ([`PhiConfig`]):
373
- Model configuration class with all the parameters of the model. Initializing with a config file does not
374
- load the weights associated with the model, only the configuration. Check out the
375
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
376
- """
377
-
378
-
379
- @add_start_docstrings(
380
- "The bare Phi Model outputting raw hidden-states without any specific head on top.",
381
- PHI_START_DOCSTRING,
382
- )
383
- class PhiPreTrainedModel(PreTrainedModel):
384
- config_class = PhiConfig
385
- base_model_prefix = "model"
386
- supports_gradient_checkpointing = True
387
- _no_split_modules = ["PhiDecoderLayer"]
388
- _skip_keys_device_placement = ["past_key_values"]
389
- _supports_flash_attn_2 = True
390
- _supports_sdpa = True
391
- _supports_cache_class = True
392
- _supports_quantized_cache = True
393
- _supports_static_cache = True
394
-
395
- def _init_weights(self, module):
396
- std = self.config.initializer_range
397
- if isinstance(module, nn.Linear):
398
- module.weight.data.normal_(mean=0.0, std=std)
399
- if module.bias is not None:
400
- module.bias.data.zero_()
401
- elif isinstance(module, nn.Embedding):
402
- module.weight.data.normal_(mean=0.0, std=std)
403
- if module.padding_idx is not None:
404
- module.weight.data[module.padding_idx].zero_()
405
-
406
-
407
- PHI_INPUTS_DOCSTRING = r"""
408
- Args:
409
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
410
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
411
- it.
412
-
413
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
414
- [`PreTrainedTokenizer.__call__`] for details.
415
-
416
- [What are input IDs?](../glossary#input-ids)
417
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
418
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
419
-
420
- - 1 for tokens that are **not masked**,
421
- - 0 for tokens that are **masked**.
422
-
423
- [What are attention masks?](../glossary#attention-mask)
424
-
425
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
426
- [`PreTrainedTokenizer.__call__`] for details.
427
-
428
- If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
429
- `past_key_values`).
430
-
431
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
432
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
433
- information on the default strategy.
434
-
435
- - 1 indicates the head is **not masked**,
436
- - 0 indicates the head is **masked**.
437
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
438
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
439
- config.n_positions - 1]`.
440
-
441
- [What are position IDs?](../glossary#position-ids)
442
- past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
443
- Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
444
- blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
445
- returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
446
-
447
- Two formats are allowed:
448
- - a [`~cache_utils.Cache`] instance, see our
449
- [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
450
- - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
451
- shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
452
- cache format.
453
-
454
- The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
455
- legacy cache format will be returned.
456
-
457
- If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
458
- have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
459
- of shape `(batch_size, sequence_length)`.
460
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
461
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
462
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
463
- model's internal embedding lookup matrix.
464
- use_cache (`bool`, *optional*):
465
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
466
- `past_key_values`).
467
- output_attentions (`bool`, *optional*):
468
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
469
- tensors for more detail.
470
- output_hidden_states (`bool`, *optional*):
471
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
472
- more detail.
473
- return_dict (`bool`, *optional*):
474
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
475
- cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
476
- Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
477
- this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
478
- the complete sequence length.
479
- """
480
-
481
-
482
- @add_start_docstrings(
483
- "The bare Phi Model outputting raw hidden-states without any specific head on top.",
484
- PHI_START_DOCSTRING,
485
- )
486
- class PhiModel(PhiPreTrainedModel):
487
- """
488
- Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PhiDecoderLayer`]
489
-
490
- Args:
491
- config: PhiConfig
492
- """
493
-
494
- def __init__(self, config: PhiConfig):
495
- super().__init__(config)
496
- self.padding_idx = config.pad_token_id
497
- self.vocab_size = config.vocab_size
498
-
499
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
500
- self.layers = nn.ModuleList(
501
- [PhiDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
502
- )
503
- self.rotary_emb = PhiRotaryEmbedding(config=config)
504
- self.gradient_checkpointing = False
505
- self.embed_dropout = nn.Dropout(config.embd_pdrop)
506
- self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
507
-
508
- # Initialize weights and apply final processing
509
- self.post_init()
510
-
511
- def get_input_embeddings(self):
512
- return self.embed_tokens
513
-
514
- def set_input_embeddings(self, value):
515
- self.embed_tokens = value
516
-
517
- @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
518
- def forward(
519
- self,
520
- input_ids: torch.LongTensor = None,
521
- attention_mask: Optional[torch.Tensor] = None,
522
- position_ids: Optional[torch.LongTensor] = None,
523
- past_key_values: Optional[Cache] = None,
524
- inputs_embeds: Optional[torch.FloatTensor] = None,
525
- use_cache: Optional[bool] = None,
526
- output_attentions: Optional[bool] = None,
527
- output_hidden_states: Optional[bool] = None,
528
- return_dict: Optional[bool] = None,
529
- cache_position: Optional[torch.LongTensor] = None,
530
- R1=None,
531
- **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
532
- ) -> Union[Tuple, BaseModelOutputWithPast]:
533
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
534
- output_hidden_states = (
535
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
536
- )
537
- use_cache = use_cache if use_cache is not None else self.config.use_cache
538
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
539
-
540
- if (input_ids is None) ^ (inputs_embeds is not None):
541
- raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
542
-
543
- if self.gradient_checkpointing and self.training and use_cache:
544
- logger.warning_once(
545
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
546
- )
547
- use_cache = False
548
-
549
- if inputs_embeds is None:
550
- inputs_embeds = self.embed_tokens(input_ids)
551
-
552
- if use_cache and past_key_values is None:
553
- past_key_values = DynamicCache()
554
-
555
- if cache_position is None:
556
- past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
557
- cache_position = torch.arange(
558
- past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
559
- )
560
-
561
- if position_ids is None:
562
- position_ids = cache_position.unsqueeze(0)
563
-
564
- causal_mask = self._update_causal_mask(
565
- attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
566
- )
567
-
568
- inputs_embeds = self.embed_dropout(inputs_embeds) # diff with Llama
569
- hidden_states = inputs_embeds
570
-
571
- # create position embeddings to be shared across the decoder layers
572
- position_embeddings = self.rotary_emb(hidden_states, position_ids)
573
-
574
- # decoder layers
575
- all_hidden_states = () if output_hidden_states else None
576
- all_self_attns = () if output_attentions else None
577
-
578
- for decoder_layer in self.layers[: self.config.num_hidden_layers]:
579
- if output_hidden_states:
580
- all_hidden_states += (hidden_states,)
581
-
582
- if self.gradient_checkpointing and self.training:
583
- layer_outputs = self._gradient_checkpointing_func(
584
- decoder_layer.__call__,
585
- hidden_states,
586
- causal_mask,
587
- position_ids,
588
- past_key_values,
589
- output_attentions,
590
- use_cache,
591
- cache_position,
592
- position_embeddings,
593
- R1,
594
-
595
- )
596
- else:
597
- layer_outputs = decoder_layer(
598
- hidden_states,
599
- attention_mask=causal_mask,
600
- position_ids=position_ids,
601
- past_key_value=past_key_values,
602
- output_attentions=output_attentions,
603
- use_cache=use_cache,
604
- cache_position=cache_position,
605
- position_embeddings=position_embeddings,
606
- R1=R1,
607
-
608
- **flash_attn_kwargs,
609
- )
610
-
611
- hidden_states = layer_outputs[0]
612
-
613
- if output_attentions:
614
- all_self_attns += (layer_outputs[1],)
615
-
616
- hidden_states = self.final_layernorm(hidden_states) # diff with Llama
617
-
618
- # add hidden states from the last decoder layer
619
- if output_hidden_states:
620
- all_hidden_states += (hidden_states,)
621
-
622
- output = BaseModelOutputWithPast(
623
- last_hidden_state=hidden_states,
624
- past_key_values=past_key_values if use_cache else None,
625
- hidden_states=all_hidden_states,
626
- attentions=all_self_attns,
627
- )
628
- return output if return_dict else output.to_tuple()
629
-
630
- def _update_causal_mask(
631
- self,
632
- attention_mask: torch.Tensor,
633
- input_tensor: torch.Tensor,
634
- cache_position: torch.Tensor,
635
- past_key_values: Cache,
636
- output_attentions: bool,
637
- ):
638
- if self.config._attn_implementation == "flash_attention_2":
639
- if attention_mask is not None and (attention_mask == 0.0).any():
640
- return attention_mask
641
- return None
642
-
643
- # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
644
- # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
645
- # to infer the attention mask.
646
- past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
647
- using_static_cache = isinstance(past_key_values, StaticCache)
648
-
649
- # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
650
- if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
651
- if AttentionMaskConverter._ignore_causal_mask_sdpa(
652
- attention_mask,
653
- inputs_embeds=input_tensor,
654
- past_key_values_length=past_seen_tokens,
655
- is_training=self.training,
656
- ):
657
- return None
658
-
659
- dtype, device = input_tensor.dtype, input_tensor.device
660
- sequence_length = input_tensor.shape[1]
661
- if using_static_cache:
662
- target_length = past_key_values.get_max_cache_shape()
663
- else:
664
- target_length = (
665
- attention_mask.shape[-1]
666
- if isinstance(attention_mask, torch.Tensor)
667
- else past_seen_tokens + sequence_length + 1
668
- )
669
-
670
- # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
671
- causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
672
- attention_mask,
673
- sequence_length=sequence_length,
674
- target_length=target_length,
675
- dtype=dtype,
676
- device=device,
677
- cache_position=cache_position,
678
- batch_size=input_tensor.shape[0],
679
- )
680
-
681
- if (
682
- self.config._attn_implementation == "sdpa"
683
- and attention_mask is not None
684
- and attention_mask.device.type == "cuda"
685
- and not output_attentions
686
- ):
687
- # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
688
- # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
689
- # Details: https://github.com/pytorch/pytorch/issues/110213
690
- min_dtype = torch.finfo(dtype).min
691
- causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
692
-
693
- return causal_mask
694
-
695
- @staticmethod
696
- def _prepare_4d_causal_attention_mask_with_cache_position(
697
- attention_mask: torch.Tensor,
698
- sequence_length: int,
699
- target_length: int,
700
- dtype: torch.dtype,
701
- device: torch.device,
702
- cache_position: torch.Tensor,
703
- batch_size: int,
704
- **kwargs,
705
- ):
706
- """
707
- Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
708
- `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
709
-
710
- Args:
711
- attention_mask (`torch.Tensor`):
712
- A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
713
- `(batch_size, 1, query_length, key_value_length)`.
714
- sequence_length (`int`):
715
- The sequence length being processed.
716
- target_length (`int`):
717
- The target length: when generating with static cache, the mask should be as long as the static cache,
718
- to account for the 0 padding, the part of the cache that is not filled yet.
719
- dtype (`torch.dtype`):
720
- The dtype to use for the 4D attention mask.
721
- device (`torch.device`):
722
- The device to plcae the 4D attention mask on.
723
- cache_position (`torch.Tensor`):
724
- Indices depicting the position of the input sequence tokens in the sequence.
725
- batch_size (`torch.Tensor`):
726
- Batch size.
727
- """
728
- if attention_mask is not None and attention_mask.dim() == 4:
729
- # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
730
- causal_mask = attention_mask
731
- else:
732
- min_dtype = torch.finfo(dtype).min
733
- causal_mask = torch.full(
734
- (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
735
- )
736
- if sequence_length != 1:
737
- causal_mask = torch.triu(causal_mask, diagonal=1)
738
- causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
739
- causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
740
- if attention_mask is not None:
741
- causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
742
- mask_length = attention_mask.shape[-1]
743
- padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
744
- padding_mask = padding_mask == 0
745
- causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
746
- padding_mask, min_dtype
747
- )
748
-
749
- return causal_mask
750
-
751
-
752
- class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
753
-
754
-
755
- class PhiForCausalLM(PhiPreTrainedModel, GenerationMixin):
756
- _tied_weights_keys = ["lm_head.weight"]
757
- _tp_plan = {"lm_head": "colwise_rep"}
758
-
759
- def __init__(self, config):
760
- super().__init__(config)
761
- self.model = PhiModel(config)
762
- self.vocab_size = config.vocab_size
763
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
764
-
765
- # Initialize weights and apply final processing
766
- self.post_init()
767
-
768
- def get_input_embeddings(self):
769
- return self.model.embed_tokens
770
-
771
- def set_input_embeddings(self, value):
772
- self.model.embed_tokens = value
773
-
774
- def get_output_embeddings(self):
775
- return self.lm_head
776
-
777
- def set_output_embeddings(self, new_embeddings):
778
- self.lm_head = new_embeddings
779
-
780
- def set_decoder(self, decoder):
781
- self.model = decoder
782
-
783
- def get_decoder(self):
784
- return self.model
785
-
786
- @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
787
- @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
788
- def forward(
789
- self,
790
- input_ids: torch.LongTensor = None,
791
- attention_mask: Optional[torch.Tensor] = None,
792
- position_ids: Optional[torch.LongTensor] = None,
793
- past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
794
- inputs_embeds: Optional[torch.FloatTensor] = None,
795
- labels: Optional[torch.LongTensor] = None,
796
- use_cache: Optional[bool] = None,
797
- output_attentions: Optional[bool] = None,
798
- output_hidden_states: Optional[bool] = None,
799
- return_dict: Optional[bool] = None,
800
- cache_position: Optional[torch.LongTensor] = None,
801
- num_logits_to_keep: int = 0,
802
- **kwargs: Unpack[KwargsForCausalLM],
803
- ) -> Union[Tuple, CausalLMOutputWithPast]:
804
- r"""
805
- Args:
806
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
807
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
808
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
809
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
810
-
811
- num_logits_to_keep (`int`, *optional*):
812
- Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
813
- `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
814
- token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
815
-
816
- Returns:
817
-
818
- Example:
819
-
820
- ```python
821
- >>> from transformers import AutoTokenizer, PhiForCausalLM
822
-
823
- >>> model = PhiForCausalLM.from_pretrained("meta-phi/Phi-2-7b-hf")
824
- >>> tokenizer = AutoTokenizer.from_pretrained("meta-phi/Phi-2-7b-hf")
825
-
826
- >>> prompt = "Hey, are you conscious? Can you talk to me?"
827
- >>> inputs = tokenizer(prompt, return_tensors="pt")
828
-
829
- >>> # Generate
830
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
831
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
832
- "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
833
- ```"""
834
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
835
- output_hidden_states = (
836
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
837
- )
838
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
839
-
840
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
841
- outputs = self.model(
842
- input_ids=input_ids,
843
- attention_mask=attention_mask,
844
- position_ids=position_ids,
845
- past_key_values=past_key_values,
846
- inputs_embeds=inputs_embeds,
847
- use_cache=use_cache,
848
- output_attentions=output_attentions,
849
- output_hidden_states=output_hidden_states,
850
- return_dict=return_dict,
851
- cache_position=cache_position,
852
- R1=self.R1.weight,
853
-
854
- **kwargs,
855
- )
856
-
857
- hidden_states = outputs[0]
858
-
859
- if self.R1 is not None:
860
- dtype = hidden_states.dtype
861
- hidden_states = (
862
- hidden_states.to(torch.float64) @ self.R1.weight.T.to(torch.float64)
863
- ).to(dtype)
864
-
865
-
866
- # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
867
- logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
868
-
869
- loss = None
870
- if labels is not None:
871
- loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
872
-
873
- if not return_dict:
874
- output = (logits,) + outputs[1:]
875
- return (loss,) + output if loss is not None else output
876
-
877
- return CausalLMOutputWithPast(
878
- loss=loss,
879
- logits=logits,
880
- past_key_values=outputs.past_key_values,
881
- hidden_states=outputs.hidden_states,
882
- attentions=outputs.attentions,
883
- )
884
-
885
-
886
- @add_start_docstrings(
887
- """
888
- The Phi Model transformer with a sequence classification head on top (linear layer).
889
-
890
- [`PhiForSequenceClassification`] uses the last token in order to do the classification, as other causal models
891
- (e.g. GPT-2) do.
892
-
893
- Since it does classification on the last token, it requires to know the position of the last token. If a
894
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
895
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
896
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
897
- each row of the batch).
898
- """,
899
- PHI_START_DOCSTRING,
900
- )
901
- class PhiForSequenceClassification(PhiPreTrainedModel):
902
- def __init__(self, config):
903
- super().__init__(config)
904
- self.num_labels = config.num_labels
905
- self.model = PhiModel(config)
906
- self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
907
-
908
- # Initialize weights and apply final processing
909
- self.post_init()
910
-
911
- def get_input_embeddings(self):
912
- return self.model.embed_tokens
913
-
914
- def set_input_embeddings(self, value):
915
- self.model.embed_tokens = value
916
-
917
- @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
918
- def forward(
919
- self,
920
- input_ids: Optional[torch.LongTensor] = None,
921
- attention_mask: Optional[torch.Tensor] = None,
922
- position_ids: Optional[torch.LongTensor] = None,
923
- past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
924
- inputs_embeds: Optional[torch.FloatTensor] = None,
925
- labels: Optional[torch.LongTensor] = None,
926
- use_cache: Optional[bool] = None,
927
- output_attentions: Optional[bool] = None,
928
- output_hidden_states: Optional[bool] = None,
929
- return_dict: Optional[bool] = None,
930
- ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
931
- r"""
932
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
933
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
934
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
935
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
936
- """
937
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
938
-
939
- transformer_outputs = self.model(
940
- input_ids,
941
- attention_mask=attention_mask,
942
- position_ids=position_ids,
943
- past_key_values=past_key_values,
944
- inputs_embeds=inputs_embeds,
945
- use_cache=use_cache,
946
- output_attentions=output_attentions,
947
- output_hidden_states=output_hidden_states,
948
- return_dict=return_dict,
949
- )
950
- hidden_states = transformer_outputs[0]
951
- logits = self.score(hidden_states)
952
-
953
- if input_ids is not None:
954
- batch_size = input_ids.shape[0]
955
- else:
956
- batch_size = inputs_embeds.shape[0]
957
-
958
- if self.config.pad_token_id is None and batch_size != 1:
959
- raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
960
- if self.config.pad_token_id is None:
961
- sequence_lengths = -1
962
- else:
963
- if input_ids is not None:
964
- # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
965
- sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
966
- sequence_lengths = sequence_lengths % input_ids.shape[-1]
967
- sequence_lengths = sequence_lengths.to(logits.device)
968
- else:
969
- sequence_lengths = -1
970
-
971
- pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
972
-
973
- loss = None
974
- if labels is not None:
975
- loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
976
-
977
- if not return_dict:
978
- output = (pooled_logits,) + transformer_outputs[1:]
979
- return ((loss,) + output) if loss is not None else output
980
-
981
- return SequenceClassifierOutputWithPast(
982
- loss=loss,
983
- logits=pooled_logits,
984
- past_key_values=transformer_outputs.past_key_values,
985
- hidden_states=transformer_outputs.hidden_states,
986
- attentions=transformer_outputs.attentions,
987
- )
988
-
989
-
990
- @add_start_docstrings(
991
- """
992
- The Phi Model transformer with a token classification head on top (a linear layer on top of the hidden-states
993
- output) e.g. for Named-Entity-Recognition (NER) tasks.
994
- """,
995
- PHI_START_DOCSTRING,
996
- )
997
- class PhiForTokenClassification(PhiPreTrainedModel):
998
- def __init__(self, config):
999
- super().__init__(config)
1000
- self.num_labels = config.num_labels
1001
- self.model = PhiModel(config)
1002
- if getattr(config, "classifier_dropout", None) is not None:
1003
- classifier_dropout = config.classifier_dropout
1004
- elif getattr(config, "hidden_dropout", None) is not None:
1005
- classifier_dropout = config.hidden_dropout
1006
- else:
1007
- classifier_dropout = 0.1
1008
- self.dropout = nn.Dropout(classifier_dropout)
1009
- self.score = nn.Linear(config.hidden_size, config.num_labels)
1010
-
1011
- # Initialize weights and apply final processing
1012
- self.post_init()
1013
-
1014
- def get_input_embeddings(self):
1015
- return self.model.embed_tokens
1016
-
1017
- def set_input_embeddings(self, value):
1018
- self.model.embed_tokens = value
1019
-
1020
- @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
1021
- @add_code_sample_docstrings(
1022
- checkpoint=_CHECKPOINT_FOR_DOC,
1023
- output_type=TokenClassifierOutput,
1024
- config_class=_CONFIG_FOR_DOC,
1025
- )
1026
- def forward(
1027
- self,
1028
- input_ids: Optional[torch.LongTensor] = None,
1029
- attention_mask: Optional[torch.Tensor] = None,
1030
- position_ids: Optional[torch.LongTensor] = None,
1031
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1032
- inputs_embeds: Optional[torch.FloatTensor] = None,
1033
- labels: Optional[torch.LongTensor] = None,
1034
- use_cache: Optional[bool] = None,
1035
- output_attentions: Optional[bool] = None,
1036
- output_hidden_states: Optional[bool] = None,
1037
- return_dict: Optional[bool] = None,
1038
- ) -> Union[Tuple, TokenClassifierOutput]:
1039
- r"""
1040
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1041
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1042
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1043
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1044
- """
1045
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1046
-
1047
- outputs = self.model(
1048
- input_ids,
1049
- attention_mask=attention_mask,
1050
- position_ids=position_ids,
1051
- past_key_values=past_key_values,
1052
- inputs_embeds=inputs_embeds,
1053
- use_cache=use_cache,
1054
- output_attentions=output_attentions,
1055
- output_hidden_states=output_hidden_states,
1056
- return_dict=return_dict,
1057
- )
1058
- sequence_output = outputs[0]
1059
- sequence_output = self.dropout(sequence_output)
1060
- logits = self.score(sequence_output)
1061
-
1062
- loss = None
1063
- if labels is not None:
1064
- loss = self.loss_function(logits, labels, self.config)
1065
-
1066
- if not return_dict:
1067
- output = (logits,) + outputs[2:]
1068
- return ((loss,) + output) if loss is not None else output
1069
-
1070
- return TokenClassifierOutput(
1071
- loss=loss,
1072
- logits=logits,
1073
- hidden_states=outputs.hidden_states,
1074
- attentions=outputs.attentions,
1075
- )