Object Detection
YOLOv10
computer-vision
pypi
kadirnar commited on
Commit
1c54df9
1 Parent(s): bc0f624

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -3
README.md CHANGED
@@ -1,3 +1,77 @@
1
- ---
2
- license: agpl-3.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: agpl-3.0
3
+ tags:
4
+ - object-detection
5
+ - computer-vision
6
+ - yolov10
7
+ - pypi
8
+ datasets:
9
+ - detection-datasets/coco
10
+ ---
11
+
12
+ ### Model Description
13
+ [YOLOv10: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2405.14458v1)
14
+
15
+ [Paper Repo: Implementation of paper - YOLOv10](https://github.com/THU-MIG/yolov10)
16
+
17
+ ### Installation
18
+ ```
19
+ pip install supervision git+https://github.com/THU-MIG/yolov10.git
20
+ ```
21
+
22
+ ### Yolov10 Inference
23
+ ```python
24
+ from ultralytics import YOLOv10
25
+ import supervision as sv
26
+ import cv2
27
+
28
+ MODEL_PATH = 'yolov10n.pt'
29
+ IMAGE_PATH = 'dog.jpeg'
30
+
31
+ model = YOLOv10(MODEL_PATH)
32
+ image = cv2.imread(IMAGE_PATH)
33
+ results = model(source=image, conf=0.25, verbose=False)[0]
34
+ detections = sv.Detections.from_ultralytics(results)
35
+ box_annotator = sv.BoxAnnotator()
36
+
37
+ category_dict = {
38
+ 0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
39
+ 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
40
+ 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
41
+ 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
42
+ 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
43
+ 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
44
+ 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
45
+ 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
46
+ 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
47
+ 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
48
+ 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake',
49
+ 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table',
50
+ 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
51
+ 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
52
+ 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
53
+ 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
54
+ }
55
+
56
+ labels = [
57
+ f"{category_dict[class_id]} {confidence:.2f}"
58
+ for class_id, confidence in zip(detections.class_id, detections.confidence)
59
+ ]
60
+ annotated_image = box_annotator.annotate(
61
+ image.copy(), detections=detections, labels=labels
62
+ )
63
+
64
+ cv2.imwrite('annotated_dog.jpeg', annotated_image)
65
+ ```
66
+
67
+ ### BibTeX Entry and Citation Info
68
+ ```
69
+ @misc{wang2024yolov10,
70
+ title={YOLOv10: Real-Time End-to-End Object Detection},
71
+ author={Ao Wang and Hui Chen and Lihao Liu and Kai Chen and Zijia Lin and Jungong Han and Guiguang Ding},
72
+ year={2024},
73
+ eprint={2405.14458},
74
+ archivePrefix={arXiv},
75
+ primaryClass={cs.CV}
76
+ }
77
+ ```