k4black commited on
Commit
2a48470
·
1 Parent(s): 626f069

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - f1
7
+ model-index:
8
+ - name: albert-offensive-lm-tapt-finetuned
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # albert-offensive-lm-tapt-finetuned
16
+
17
+ This model is a fine-tuned version of [k4black/albert-offensive-lm-tapt](https://huggingface.co/k4black/albert-offensive-lm-tapt) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.4680
20
+ - F1: 0.7765
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 1e-05
40
+ - train_batch_size: 12
41
+ - eval_batch_size: 32
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 3
46
+ - mixed_precision_training: Native AMP
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | F1 |
51
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
52
+ | 0.6585 | 0.1 | 100 | 0.6663 | 0.3932 |
53
+ | 0.6308 | 0.2 | 200 | 0.5807 | 0.5746 |
54
+ | 0.5161 | 0.29 | 300 | 0.5005 | 0.7366 |
55
+ | 0.4986 | 0.39 | 400 | 0.4984 | 0.7434 |
56
+ | 0.484 | 0.49 | 500 | 0.4956 | 0.7098 |
57
+ | 0.5035 | 0.59 | 600 | 0.4876 | 0.7334 |
58
+ | 0.4767 | 0.69 | 700 | 0.4824 | 0.7314 |
59
+ | 0.482 | 0.78 | 800 | 0.4937 | 0.7194 |
60
+ | 0.4524 | 0.88 | 900 | 0.4759 | 0.7606 |
61
+ | 0.4541 | 0.98 | 1000 | 0.4786 | 0.7613 |
62
+ | 0.4404 | 1.08 | 1100 | 0.4597 | 0.7663 |
63
+ | 0.4383 | 1.18 | 1200 | 0.4531 | 0.7762 |
64
+ | 0.4414 | 1.27 | 1300 | 0.4436 | 0.7764 |
65
+ | 0.4336 | 1.37 | 1400 | 0.4477 | 0.7625 |
66
+ | 0.4353 | 1.47 | 1500 | 0.4466 | 0.7490 |
67
+ | 0.4356 | 1.57 | 1600 | 0.4429 | 0.7743 |
68
+ | 0.3938 | 1.67 | 1700 | 0.4450 | 0.7727 |
69
+ | 0.4066 | 1.76 | 1800 | 0.4437 | 0.7776 |
70
+ | 0.3867 | 1.86 | 1900 | 0.4717 | 0.7618 |
71
+ | 0.4123 | 1.96 | 2000 | 0.4511 | 0.7689 |
72
+ | 0.3671 | 2.06 | 2100 | 0.4680 | 0.7765 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.23.1
78
+ - Pytorch 1.13.0+cu117
79
+ - Datasets 2.6.1
80
+ - Tokenizers 0.13.1