File size: 1,690 Bytes
4d99d3e a5f8aa3 4d99d3e 2a379ed 4d99d3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
language:
- en
inference: false
---
# XLM RoBERTa Base ANCE-Warmuped
This is a XLM RoBERTa Base model trained with ANCE warmup script.
RobertaForSequenceClassification is replaced to XLMRobertaForSequenceClassification in warmup script.
trained 60k steps.
train args is below:
``` text
data_dir: ../data/raw_data/
train_model_type: rdot_nll
model_name_or_path: xlm-roberta-base
task_name: msmarco
output_dir:
config_name:
tokenizer_name:
cache_dir:
max_seq_length: 128
do_train: True
do_eval: False
evaluate_during_training: True
do_lower_case: False
log_dir: ../logs/
eval_type: full
optimizer: lamb
scheduler: linear
per_gpu_train_batch_size: 32
per_gpu_eval_batch_size: 32
gradient_accumulation_steps: 1
learning_rate: 0.0002
weight_decay: 0.0
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 2.0
max_steps: -1
warmup_steps: 1000
logging_steps: 1000
logging_steps_per_eval: 20
save_steps: 30000
eval_all_checkpoints: False
no_cuda: False
overwrite_output_dir: True
overwrite_cache: False
seed: 42
fp16: True
fp16_opt_level: O1
expected_train_size: 35000000
load_optimizer_scheduler: False
local_rank: 0
server_ip:
server_port:
n_gpu: 1
device: cuda:0
output_mode: classification
num_labels: 2
train_batch_size: 32
```
# Eval Result
``` text
Reranking/Full ranking mrr: 0.27380855732933/0.24284821712830248
{"learning_rate": 0.00019460324719871943, "loss": 0.0895877162806064, "step": 60000}
```
# Usage
``` python3
from transformers import XLMRobertaForSequenceClassification, XLMRobertaTokenizer
repo = "k-ush/xlm-roberta-base-ance-warmup"
model = XLMRobertaForSequenceClassification.from_pretrained(repo)
tokenizer = XLMRobertaTokenizer.from_pretrained(repo)
``` |