jykang007 commited on
Commit
935e8a8
1 Parent(s): 77de851

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4803fa7c8ee54566590a2b47777c547d18338e8ade6a45d94eca4b56b3bd286d
3
+ size 124203
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb9cea079c0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fb9ce9fbc40>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1723367244859958134,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2s5yv2nXi7+gzL09zciRP7p2ED9qy7099YAzv+9wZj8MyL09Pfm4Ps3Xij8MyL09lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADyNxv/7FPj4Vzqm96xaTv2Ng+L6fQRo+ila+vpFErj+DpYu/3Q/Iv7aUgz/jNpU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADe/5+/oq47P1cPkL+vXVHAIuAlwKkZUD7lUxq/2s5yv2nXi7+gzL09C4RkvOuYSzw1NZM7ArxIPZoJdj2p8zg9s5zQvKc0DLxV5iA8QRy1PFrzDcCRF58/gzSevY/Fkr3adIM++OqdP83IkT+6dhA/asu9PVzzZrwFk0w8dZu2O53OSj2ZHnU9pNw5Pe9xurwzz+S7L6clPPPjUT+JjXw+38eRv9T/CD5aUKw+vxiMvvl/nT/1gDO/73BmPwzIvT0gPGa8N0RPPFywhTsw8kk9C2ZzPaTcOT35cbq8V8/ku0FPHjxoB2s8tXgOwBP8nz/A1pe9YpWMvec2gT47+b0/Pfm4Ps3Xij8MyL09bJNlvEi+RjwHSII7O+NJPUB+dD2k3Dk9+XG6vFjP5LswTx48lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[-0.9484688 -1.0925113 0.09267545]\n [ 1.1389405 0.5643116 0.09267314]\n [-0.7011865 0.90016073 0.09266672]\n [ 0.36127654 1.0847107 0.09266672]]",
34
+ "desired_goal": "[[-0.9419412 0.18630216 -0.0829126 ]\n [-1.1491369 -0.48511037 0.15064095]\n [-0.371754 1.3614675 -1.0909885 ]\n [-1.5629841 1.0279758 1.1657375 ]]",
35
+ "observation": "[[-1.249996 0.73313344 -1.1254681 -3.271343 -2.591805 0.20322289\n -0.6028426 -0.9484688 -1.0925113 0.09267545 -0.0139475 0.0124266\n 0.00449243 0.04900742 0.06006775 0.04515425 -0.02546535 -0.00855748\n 0.00982054]\n [ 0.0221082 -2.217978 1.2429067 -0.0772486 -0.07166588 0.25675088\n 1.2337332 1.1389405 0.5643116 0.09267314 -0.01409611 0.01248622\n 0.00557273 0.04951345 0.05984363 0.04537643 -0.02275941 -0.00698271\n 0.01011066]\n [ 0.8198845 0.24663366 -1.1389121 0.1337884 0.33655053 -0.2736263\n 1.2304679 -0.7011865 0.90016073 0.09266672 -0.01405242 0.01265054\n 0.00407986 0.04930323 0.05942349 0.04537643 -0.02275942 -0.00698272\n 0.00966245]\n [ 0.01434503 -2.2261174 1.2498802 -0.07414007 -0.0686443 0.252372\n 1.4841684 0.36127654 1.0847107 0.09266672 -0.0140122 0.01213033\n 0.00397587 0.04928897 0.05969071 0.04537643 -0.02275942 -0.00698273\n 0.00966243]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwzEIPk9Hiz0K16M8JtqFPQeuDz0K16M8nKjAPf8+Dj4K16M8tYwrPeqrCL4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0vSzvYcmsD3gPoQ97Zm/PbCRrr1Ko1w+Yo/gPCGtb7tk5E4+QhjJveC1KD1X6nk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAwzEIPk9Hiz0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAACbahT0Hrg89CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACcqMA9/z4OPgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAtYwrPeqrCL4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[ 0.13300233 0.0680071 0.02 ]\n [ 0.06535749 0.03507807 0.02 ]\n [ 0.0940716 0.13891219 0.02 ]\n [ 0.04188224 -0.1334683 0.02 ]]",
45
+ "desired_goal": "[[-0.0878693 0.08601099 0.06457305]\n [ 0.09355531 -0.08523881 0.21546665]\n [ 0.02741212 -0.00365717 0.20204312]\n [-0.0981908 0.04118907 0.0610145 ]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3300233e-01\n 6.8007104e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 6.5357491e-02\n 3.5078075e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 9.4071597e-02\n 1.3891219e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.1882236e-02\n -1.3346830e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CWqx1OTJQtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWqpXAM2FWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWqywLmZE2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWq8pjMFEBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrFCBPKuCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWq8kO7QLNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrGHAh0QsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrP7+kxh2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrYo+wC8wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrQKwY+B6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrZwBHTZydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrjyHmA9WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrswaR6njdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrkSaVlf7dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CWrtVjqfOEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrtsgdOqOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWr3oIfKZEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWr4hGpda/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWsBkYXO4YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWsCI+GGmDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWsL5eqrBCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWsNibDuSfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWsWm0E5hjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWsXL5ylvZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWshHe7+UAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWshvN/vv0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWsq2H+IdmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWsrA6+36RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWs0zMA3kxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWs0dmQKa5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWs9h5xBE8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWs96AvtdBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWtHr6LwWndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWtHby6MBIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWtQfTTfBOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWtQqgh8pkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWtafFrEcbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWtaIbwSamdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWtjWoFV1fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWtjRmK64EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWttCWNWELdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWttHfMwDedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWt2LOAy2ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWt2NNahYedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWuACzC1qndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWt/ygPEsKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWuIz9CNS7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWuIuXNTtLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWuSews5GSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWuSOymhugdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWube7tiQUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWubwpON5udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWullHBk7PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWulZ1FH8TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWuudwNsnBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWuuX2M85kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWu4L5AQg+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWu38f3evZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvA/u9eyBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvBkp7TlUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvLVBD5TIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvLGza9K3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvUKB/ZuidX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CWvLrVvuPWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvUdGiHqNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWveZK3/gjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvnLSNOuadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWveuIRAbAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvnSfDk2hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvxGYrrgPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWv55paibldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvxbItDlYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWv6EYO2AodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwDyzHCGfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwMsByS3cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwEXoTwlTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwM9YfW+XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwWzV+Zw5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwgU1AJLNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwX8M/hVEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwgblA/s3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwqNliBoVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwy+kgwGodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwqhM8HObdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CWwzYoy9EkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwzJ7b+LndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWw9AY51eTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWw9i/wiJPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxGaWHDaXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxGQqZtvXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxQOPeYUndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxQ4Y77sOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxZvsZ5zHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxZdQfp2VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxjQeV9ncdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxj+Lm6oVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxs1eSjgydX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CWxtLowEhadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxsvqC6H1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWx2i4axX5dWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWV5wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGEvaG9tZS9qeWthbmcvYW5hY29uZGEzL2VudnMvcHkzcDExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYS9ob21lL2p5a2FuZy9hbmFjb25kYTMvZW52cy9weTNwMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac834264856dc0b2b4bd48323d5af5b676e5580c0c34d6e6effe00dd96cc7d0b
3
+ size 52079
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22bc79c58880e040aecc25c1c4f8cc8c2872c17c5476d52b07a5582a74a04ec1
3
+ size 53359
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-105-generic-x86_64-with-glibc2.31 # 115~20.04.1-Ubuntu SMP Mon Apr 15 17:33:04 UTC 2024
2
+ - Python: 3.11.9
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.28.1
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb9cea079c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb9ce9fbc40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723367244859958134, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2s5yv2nXi7+gzL09zciRP7p2ED9qy7099YAzv+9wZj8MyL09Pfm4Ps3Xij8MyL09lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADyNxv/7FPj4Vzqm96xaTv2Ng+L6fQRo+ila+vpFErj+DpYu/3Q/Iv7aUgz/jNpU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADe/5+/oq47P1cPkL+vXVHAIuAlwKkZUD7lUxq/2s5yv2nXi7+gzL09C4RkvOuYSzw1NZM7ArxIPZoJdj2p8zg9s5zQvKc0DLxV5iA8QRy1PFrzDcCRF58/gzSevY/Fkr3adIM++OqdP83IkT+6dhA/asu9PVzzZrwFk0w8dZu2O53OSj2ZHnU9pNw5Pe9xurwzz+S7L6clPPPjUT+JjXw+38eRv9T/CD5aUKw+vxiMvvl/nT/1gDO/73BmPwzIvT0gPGa8N0RPPFywhTsw8kk9C2ZzPaTcOT35cbq8V8/ku0FPHjxoB2s8tXgOwBP8nz/A1pe9YpWMvec2gT47+b0/Pfm4Ps3Xij8MyL09bJNlvEi+RjwHSII7O+NJPUB+dD2k3Dk9+XG6vFjP5LswTx48lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.9484688 -1.0925113 0.09267545]\n [ 1.1389405 0.5643116 0.09267314]\n [-0.7011865 0.90016073 0.09266672]\n [ 0.36127654 1.0847107 0.09266672]]", "desired_goal": "[[-0.9419412 0.18630216 -0.0829126 ]\n [-1.1491369 -0.48511037 0.15064095]\n [-0.371754 1.3614675 -1.0909885 ]\n [-1.5629841 1.0279758 1.1657375 ]]", "observation": "[[-1.249996 0.73313344 -1.1254681 -3.271343 -2.591805 0.20322289\n -0.6028426 -0.9484688 -1.0925113 0.09267545 -0.0139475 0.0124266\n 0.00449243 0.04900742 0.06006775 0.04515425 -0.02546535 -0.00855748\n 0.00982054]\n [ 0.0221082 -2.217978 1.2429067 -0.0772486 -0.07166588 0.25675088\n 1.2337332 1.1389405 0.5643116 0.09267314 -0.01409611 0.01248622\n 0.00557273 0.04951345 0.05984363 0.04537643 -0.02275941 -0.00698271\n 0.01011066]\n [ 0.8198845 0.24663366 -1.1389121 0.1337884 0.33655053 -0.2736263\n 1.2304679 -0.7011865 0.90016073 0.09266672 -0.01405242 0.01265054\n 0.00407986 0.04930323 0.05942349 0.04537643 -0.02275942 -0.00698272\n 0.00966245]\n [ 0.01434503 -2.2261174 1.2498802 -0.07414007 -0.0686443 0.252372\n 1.4841684 0.36127654 1.0847107 0.09266672 -0.0140122 0.01213033\n 0.00397587 0.04928897 0.05969071 0.04537643 -0.02275942 -0.00698273\n 0.00966243]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwzEIPk9Hiz0K16M8JtqFPQeuDz0K16M8nKjAPf8+Dj4K16M8tYwrPeqrCL4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0vSzvYcmsD3gPoQ97Zm/PbCRrr1Ko1w+Yo/gPCGtb7tk5E4+QhjJveC1KD1X6nk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAwzEIPk9Hiz0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAACbahT0Hrg89CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACcqMA9/z4OPgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAtYwrPeqrCL4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.13300233 0.0680071 0.02 ]\n [ 0.06535749 0.03507807 0.02 ]\n [ 0.0940716 0.13891219 0.02 ]\n [ 0.04188224 -0.1334683 0.02 ]]", "desired_goal": "[[-0.0878693 0.08601099 0.06457305]\n [ 0.09355531 -0.08523881 0.21546665]\n [ 0.02741212 -0.00365717 0.20204312]\n [-0.0981908 0.04118907 0.0610145 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3300233e-01\n 6.8007104e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 6.5357491e-02\n 3.5078075e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 9.4071597e-02\n 1.3891219e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.1882236e-02\n -1.3346830e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CWqx1OTJQtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWqpXAM2FWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWqywLmZE2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWq8pjMFEBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrFCBPKuCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWq8kO7QLNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrGHAh0QsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrP7+kxh2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrYo+wC8wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrQKwY+B6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrZwBHTZydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrjyHmA9WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrswaR6njdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrkSaVlf7dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CWrtVjqfOEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWrtsgdOqOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWr3oIfKZEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWr4hGpda/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWsBkYXO4YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWsCI+GGmDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWsL5eqrBCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWsNibDuSfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWsWm0E5hjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWsXL5ylvZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWshHe7+UAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWshvN/vv0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWsq2H+IdmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWsrA6+36RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWs0zMA3kxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWs0dmQKa5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWs9h5xBE8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWs96AvtdBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWtHr6LwWndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWtHby6MBIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWtQfTTfBOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWtQqgh8pkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWtafFrEcbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWtaIbwSamdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWtjWoFV1fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWtjRmK64EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWttCWNWELdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWttHfMwDedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWt2LOAy2ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWt2NNahYedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWuACzC1qndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWt/ygPEsKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWuIz9CNS7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWuIuXNTtLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWuSews5GSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWuSOymhugdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWube7tiQUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWubwpON5udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWullHBk7PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWulZ1FH8TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWuudwNsnBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWuuX2M85kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWu4L5AQg+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWu38f3evZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvA/u9eyBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvBkp7TlUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvLVBD5TIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvLGza9K3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvUKB/ZuidX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CWvLrVvuPWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvUdGiHqNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWveZK3/gjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvnLSNOuadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWveuIRAbAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvnSfDk2hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvxGYrrgPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWv55paibldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWvxbItDlYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWv6EYO2AodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwDyzHCGfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwMsByS3cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwEXoTwlTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwM9YfW+XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwWzV+Zw5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwgU1AJLNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwX8M/hVEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwgblA/s3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwqNliBoVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwy+kgwGodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwqhM8HObdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CWwzYoy9EkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWwzJ7b+LndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWw9AY51eTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWw9i/wiJPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxGaWHDaXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxGQqZtvXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxQOPeYUndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxQ4Y77sOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxZvsZ5zHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxZdQfp2VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxjQeV9ncdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxj+Lm6oVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxs1eSjgydX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CWxtLowEhadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWxsvqC6H1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CWx2i4axX5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV5wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGEvaG9tZS9qeWthbmcvYW5hY29uZGEzL2VudnMvcHkzcDExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYS9ob21lL2p5a2FuZy9hbmFjb25kYTMvZW52cy9weTNwMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.0-105-generic-x86_64-with-glibc2.31 # 115~20.04.1-Ubuntu SMP Mon Apr 15 17:33:04 UTC 2024", "Python": "3.11.9", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
replay.mp4 ADDED
Binary file (914 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-11T19:43:14.808259"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad5a67e3d8790123798ab34fd7f9596c85e3114dd8432cc87ad17f0657bfb5ef
3
+ size 2953