File size: 2,036 Bytes
817d1f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
tags:
- generated_from_trainer
model-index:
- name: vicuna-ul15-sft-full
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vicuna-ul15-sft-full

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4380

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 512
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.0541        | 0.68  | 14   | 1.0341          |
| 0.9708        | 1.71  | 29   | 1.0142          |
| 0.9142        | 2.68  | 43   | 1.0111          |
| 0.8637        | 3.71  | 58   | 1.0239          |
| 0.8091        | 4.68  | 72   | 1.0363          |
| 0.7516        | 5.71  | 87   | 1.0780          |
| 0.6884        | 6.68  | 101  | 1.0987          |
| 0.6309        | 7.71  | 116  | 1.1394          |
| 0.5696        | 8.68  | 130  | 1.1820          |
| 0.4752        | 9.71  | 145  | 1.2695          |
| 0.448         | 10.68 | 159  | 1.3109          |
| 0.3955        | 11.71 | 174  | 1.3877          |
| 0.3579        | 12.68 | 188  | 1.3923          |
| 0.3228        | 13.71 | 203  | 1.4064          |
| 0.2914        | 14.68 | 217  | 1.4377          |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0a0+32f93b1
- Datasets 2.14.6
- Tokenizers 0.14.1