|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from pathlib import Path |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
import PIL |
|
import PIL.Image |
|
|
|
from paddlenlp.transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer |
|
from ppdiffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel |
|
from ppdiffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from ppdiffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from ppdiffusers.pipelines.stable_diffusion.safety_checker import ( |
|
StableDiffusionSafetyChecker, |
|
) |
|
from ppdiffusers.schedulers import KarrasDiffusionSchedulers |
|
from ppdiffusers.utils import ( |
|
PIL_INTERPOLATION, |
|
logging, |
|
randn_tensor, |
|
safetensors_load, |
|
smart_load, |
|
torch_load, |
|
) |
|
|
|
|
|
@paddle.no_grad() |
|
def load_lora( |
|
pipeline, |
|
state_dict: dict, |
|
LORA_PREFIX_UNET: str = "lora_unet", |
|
LORA_PREFIX_TEXT_ENCODER: str = "lora_te", |
|
ratio: float = 1.0, |
|
): |
|
ratio = float(ratio) |
|
visited = [] |
|
for key in state_dict: |
|
if ".alpha" in key or ".lora_up" in key or key in visited: |
|
continue |
|
|
|
if "text" in key: |
|
tmp_layer_infos = key.split(".")[0].split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_") |
|
hf_to_ppnlp = { |
|
"encoder": "transformer", |
|
"fc1": "linear1", |
|
"fc2": "linear2", |
|
} |
|
layer_infos = [] |
|
for layer_info in tmp_layer_infos: |
|
if layer_info == "mlp": |
|
continue |
|
layer_infos.append(hf_to_ppnlp.get(layer_info, layer_info)) |
|
curr_layer: paddle.nn.Linear = pipeline.text_encoder |
|
else: |
|
layer_infos = key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_") |
|
curr_layer: paddle.nn.Linear = pipeline.unet |
|
|
|
temp_name = layer_infos.pop(0) |
|
while len(layer_infos) > -1: |
|
try: |
|
if temp_name == "to": |
|
raise ValueError() |
|
curr_layer = curr_layer.__getattr__(temp_name) |
|
if len(layer_infos) > 0: |
|
temp_name = layer_infos.pop(0) |
|
elif len(layer_infos) == 0: |
|
break |
|
except Exception: |
|
if len(temp_name) > 0: |
|
temp_name += "_" + layer_infos.pop(0) |
|
else: |
|
temp_name = layer_infos.pop(0) |
|
|
|
triplet_keys = [key, key.replace("lora_down", "lora_up"), key.replace("lora_down.weight", "alpha")] |
|
dtype: paddle.dtype = curr_layer.weight.dtype |
|
weight_down: paddle.Tensor = state_dict[triplet_keys[0]].cast(dtype) |
|
weight_up: paddle.Tensor = state_dict[triplet_keys[1]].cast(dtype) |
|
rank: float = float(weight_down.shape[0]) |
|
if triplet_keys[2] in state_dict: |
|
alpha: float = state_dict[triplet_keys[2]].cast(dtype).item() |
|
scale: float = alpha / rank |
|
else: |
|
scale = 1.0 |
|
|
|
if not hasattr(curr_layer, "backup_weights"): |
|
curr_layer.backup_weights = curr_layer.weight.clone() |
|
|
|
if len(weight_down.shape) == 4: |
|
if weight_down.shape[2:4] == [1, 1]: |
|
|
|
curr_layer.weight.copy_( |
|
curr_layer.weight |
|
+ ratio |
|
* paddle.matmul(weight_up.squeeze([-1, -2]), weight_down.squeeze([-1, -2])).unsqueeze([-1, -2]) |
|
* scale, |
|
True, |
|
) |
|
else: |
|
|
|
curr_layer.weight.copy_( |
|
curr_layer.weight |
|
+ ratio |
|
* paddle.nn.functional.conv2d(weight_down.transpose([1, 0, 2, 3]), weight_up).transpose( |
|
[1, 0, 2, 3] |
|
) |
|
* scale, |
|
True, |
|
) |
|
else: |
|
|
|
curr_layer.weight.copy_(curr_layer.weight + ratio * paddle.matmul(weight_up, weight_down).T * scale, True) |
|
|
|
|
|
visited.extend(triplet_keys) |
|
return pipeline |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class WebUIStableDiffusionControlNetPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance. |
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
controlnet ([`ControlNetModel`]): |
|
Provides additional conditioning to the unet during the denoising process. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. |
|
feature_extractor ([`CLIPFeatureExtractor`]): |
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`. |
|
""" |
|
_optional_components = ["safety_checker", "feature_extractor"] |
|
enable_emphasis = True |
|
comma_padding_backtrack = 20 |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
controlnet: ControlNetModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPFeatureExtractor, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__() |
|
|
|
if safety_checker is None and requires_safety_checker: |
|
logger.warning( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
raise ValueError( |
|
f"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
controlnet=controlnet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
|
|
clip_model = FrozenCLIPEmbedder(text_encoder, tokenizer) |
|
self.sj = StableDiffusionModelHijack(clip_model) |
|
self.orginal_scheduler_config = self.scheduler.config |
|
self.supported_scheduler = [ |
|
"pndm", |
|
"lms", |
|
"euler", |
|
"euler-ancestral", |
|
"dpm-multi", |
|
"dpm-single", |
|
"unipc-multi", |
|
"ddim", |
|
"ddpm", |
|
"deis-multi", |
|
"heun", |
|
"kdpm2-ancestral", |
|
"kdpm2", |
|
] |
|
self.weights_has_changed = False |
|
|
|
def add_ti_embedding_dir(self, embeddings_dir): |
|
self.sj.embedding_db.add_embedding_dir(embeddings_dir) |
|
self.sj.embedding_db.load_textual_inversion_embeddings() |
|
|
|
def clear_ti_embedding(self): |
|
self.sj.embedding_db.clear_embedding_dirs() |
|
self.sj.embedding_db.load_textual_inversion_embeddings(True) |
|
|
|
def change_scheduler(self, scheduler_type="ddim"): |
|
self.switch_scheduler(scheduler_type) |
|
|
|
def switch_scheduler(self, scheduler_type="ddim"): |
|
scheduler_type = scheduler_type.lower() |
|
from ppdiffusers import ( |
|
DDIMScheduler, |
|
DDPMScheduler, |
|
DEISMultistepScheduler, |
|
DPMSolverMultistepScheduler, |
|
DPMSolverSinglestepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
HeunDiscreteScheduler, |
|
KDPM2AncestralDiscreteScheduler, |
|
KDPM2DiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
UniPCMultistepScheduler, |
|
) |
|
|
|
if scheduler_type == "pndm": |
|
scheduler = PNDMScheduler.from_config(self.orginal_scheduler_config, skip_prk_steps=True) |
|
elif scheduler_type == "lms": |
|
scheduler = LMSDiscreteScheduler.from_config(self.orginal_scheduler_config) |
|
elif scheduler_type == "heun": |
|
scheduler = HeunDiscreteScheduler.from_config(self.orginal_scheduler_config) |
|
elif scheduler_type == "euler": |
|
scheduler = EulerDiscreteScheduler.from_config(self.orginal_scheduler_config) |
|
elif scheduler_type == "euler-ancestral": |
|
scheduler = EulerAncestralDiscreteScheduler.from_config(self.orginal_scheduler_config) |
|
elif scheduler_type == "dpm-multi": |
|
scheduler = DPMSolverMultistepScheduler.from_config(self.orginal_scheduler_config) |
|
elif scheduler_type == "dpm-single": |
|
scheduler = DPMSolverSinglestepScheduler.from_config(self.orginal_scheduler_config) |
|
elif scheduler_type == "kdpm2-ancestral": |
|
scheduler = KDPM2AncestralDiscreteScheduler.from_config(self.orginal_scheduler_config) |
|
elif scheduler_type == "kdpm2": |
|
scheduler = KDPM2DiscreteScheduler.from_config(self.orginal_scheduler_config) |
|
elif scheduler_type == "unipc-multi": |
|
scheduler = UniPCMultistepScheduler.from_config(self.orginal_scheduler_config) |
|
elif scheduler_type == "ddim": |
|
scheduler = DDIMScheduler.from_config( |
|
self.orginal_scheduler_config, |
|
steps_offset=1, |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
elif scheduler_type == "ddpm": |
|
scheduler = DDPMScheduler.from_config( |
|
self.orginal_scheduler_config, |
|
) |
|
elif scheduler_type == "deis-multi": |
|
scheduler = DEISMultistepScheduler.from_config( |
|
self.orginal_scheduler_config, |
|
) |
|
else: |
|
raise ValueError( |
|
f"Scheduler of type {scheduler_type} doesn't exist! Please choose in {self.supported_scheduler}!" |
|
) |
|
self.scheduler = scheduler |
|
|
|
@paddle.no_grad() |
|
def _encode_prompt( |
|
self, |
|
prompt: str, |
|
do_classifier_free_guidance: float = 7.5, |
|
negative_prompt: str = None, |
|
num_inference_steps: int = 50, |
|
): |
|
if do_classifier_free_guidance: |
|
assert isinstance(negative_prompt, str) |
|
negative_prompt = [negative_prompt] |
|
uc = get_learned_conditioning(self.sj.clip, negative_prompt, num_inference_steps) |
|
else: |
|
uc = None |
|
|
|
c = get_multicond_learned_conditioning(self.sj.clip, prompt, num_inference_steps) |
|
return c, uc |
|
|
|
def run_safety_checker(self, image, dtype): |
|
if self.safety_checker is not None: |
|
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pd") |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.cast(dtype) |
|
) |
|
else: |
|
has_nsfw_concept = None |
|
return image, has_nsfw_concept |
|
|
|
def decode_latents(self, latents): |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents).sample |
|
image = (image / 2 + 0.5).clip(0, 1) |
|
|
|
image = image.transpose([0, 2, 3, 1]).cast("float32").numpy() |
|
return image |
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
image, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt=None, |
|
controlnet_conditioning_scale=1.0, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and not isinstance(prompt, str): |
|
raise ValueError(f"`prompt` has to be of type `str` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and not isinstance(negative_prompt, str): |
|
raise ValueError(f"`negative_prompt` has to be of type `str` but is {type(negative_prompt)}") |
|
|
|
|
|
|
|
if isinstance(self.controlnet, ControlNetModel): |
|
self.check_image(image, prompt) |
|
else: |
|
assert False |
|
|
|
|
|
if isinstance(self.controlnet, ControlNetModel): |
|
if not isinstance(controlnet_conditioning_scale, (float, list, tuple)): |
|
raise TypeError( |
|
"For single controlnet: `controlnet_conditioning_scale` must be type `float, list(float) or tuple(float)`." |
|
) |
|
|
|
def check_image(self, image, prompt): |
|
image_is_pil = isinstance(image, PIL.Image.Image) |
|
image_is_tensor = isinstance(image, paddle.Tensor) |
|
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) |
|
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], paddle.Tensor) |
|
|
|
if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list: |
|
raise TypeError( |
|
"image must be one of PIL image, paddle tensor, list of PIL images, or list of paddle tensors" |
|
) |
|
|
|
if image_is_pil: |
|
image_batch_size = 1 |
|
elif image_is_tensor: |
|
image_batch_size = image.shape[0] |
|
elif image_is_pil_list: |
|
image_batch_size = len(image) |
|
elif image_is_tensor_list: |
|
image_batch_size = len(image) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
prompt_batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
prompt_batch_size = len(prompt) |
|
|
|
if image_batch_size != 1 and image_batch_size != prompt_batch_size: |
|
raise ValueError( |
|
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" |
|
) |
|
|
|
def prepare_image(self, image, width, height, dtype): |
|
if not isinstance(image, paddle.Tensor): |
|
if isinstance(image, PIL.Image.Image): |
|
image = [image] |
|
|
|
if isinstance(image[0], PIL.Image.Image): |
|
images = [] |
|
for image_ in image: |
|
image_ = image_.convert("RGB") |
|
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]) |
|
image_ = np.array(image_) |
|
image_ = image_[None, :] |
|
images.append(image_) |
|
|
|
image = np.concatenate(images, axis=0) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = image.transpose(0, 3, 1, 2) |
|
image = paddle.to_tensor(image) |
|
elif isinstance(image[0], paddle.Tensor): |
|
image = paddle.concat(image, axis=0) |
|
|
|
image = image.cast(dtype) |
|
return image |
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None): |
|
shape = [batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor] |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, dtype=dtype) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def _default_height_width(self, height, width, image): |
|
while isinstance(image, list): |
|
image = image[0] |
|
|
|
if height is None: |
|
if isinstance(image, PIL.Image.Image): |
|
height = image.height |
|
elif isinstance(image, paddle.Tensor): |
|
height = image.shape[3] |
|
|
|
height = (height // 8) * 8 |
|
|
|
if width is None: |
|
if isinstance(image, PIL.Image.Image): |
|
width = image.width |
|
elif isinstance(image, paddle.Tensor): |
|
width = image.shape[2] |
|
|
|
width = (width // 8) * 8 |
|
|
|
return height, width |
|
|
|
@paddle.no_grad() |
|
def __call__( |
|
self, |
|
prompt: str = None, |
|
image: PIL.Image.Image = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: str = None, |
|
eta: float = 0.0, |
|
generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None, |
|
latents: Optional[paddle.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
clip_skip: int = 1, |
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0, |
|
lora_dir: str = "./loras", |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
image (`paddle.Tensor`, `PIL.Image.Image`): |
|
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If |
|
the type is specified as `paddle.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can |
|
also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If |
|
height and/or width are passed, `image` is resized according to them. If multiple ControlNets are |
|
specified in init, images must be passed as a list such that each element of the list can be correctly |
|
batched for input to a single controlnet. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. |
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`paddle.Generator` or `List[paddle.Generator]`, *optional*): |
|
One or a list of paddle generator(s) to make generation deterministic. |
|
latents (`paddle.Tensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). |
|
clip_skip (`int`, *optional*, defaults to 1): |
|
CLIP_stop_at_last_layers, if clip_skip <= 1, we will use the last_hidden_state from text_encoder. |
|
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added |
|
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the |
|
corresponding scale as a list. |
|
lora_dir (`str`, *optional*): |
|
Path to lora which we want to load. |
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
try: |
|
|
|
height, width = self._default_height_width(height, width, image) |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
image, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt, |
|
controlnet_conditioning_scale, |
|
) |
|
|
|
batch_size = 1 |
|
|
|
image = self.prepare_image( |
|
image=image, |
|
width=width, |
|
height=height, |
|
dtype=self.controlnet.dtype, |
|
) |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
prompts, extra_network_data = parse_prompts([prompt]) |
|
|
|
if lora_dir is not None and os.path.exists(lora_dir): |
|
lora_mapping = {p.stem: p.absolute() for p in Path(lora_dir).glob("*.safetensors")} |
|
for params in extra_network_data["lora"]: |
|
assert len(params.items) > 0 |
|
name = params.items[0] |
|
if name in lora_mapping: |
|
ratio = float(params.items[1]) if len(params.items) > 1 else 1.0 |
|
lora_state_dict = smart_load(lora_mapping[name], map_location=paddle.get_device()) |
|
self.weights_has_changed = True |
|
load_lora(self, state_dict=lora_state_dict, ratio=ratio) |
|
del lora_state_dict |
|
else: |
|
print(f"We can't find lora weight: {name}! Please make sure that exists!") |
|
|
|
self.sj.clip.CLIP_stop_at_last_layers = clip_skip |
|
|
|
prompt_embeds, negative_prompt_embeds = self._encode_prompt( |
|
prompts, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
num_inference_steps=num_inference_steps, |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.in_channels |
|
latents = self.prepare_latents( |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
self.unet.dtype, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
step = i // self.scheduler.order |
|
do_batch = False |
|
conds_list, cond_tensor = reconstruct_multicond_batch(prompt_embeds, step) |
|
try: |
|
weight = conds_list[0][0][1] |
|
except Exception: |
|
weight = 1.0 |
|
if do_classifier_free_guidance: |
|
uncond_tensor = reconstruct_cond_batch(negative_prompt_embeds, step) |
|
do_batch = cond_tensor.shape[1] == uncond_tensor.shape[1] |
|
|
|
|
|
latent_model_input = paddle.concat([latents] * 2) if do_batch else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
if do_batch: |
|
encoder_hidden_states = paddle.concat([uncond_tensor, cond_tensor]) |
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=encoder_hidden_states, |
|
controlnet_cond=paddle.concat([image, image]), |
|
conditioning_scale=controlnet_conditioning_scale, |
|
return_dict=False, |
|
) |
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
).sample |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + weight * guidance_scale * ( |
|
noise_pred_text - noise_pred_uncond |
|
) |
|
else: |
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=cond_tensor, |
|
controlnet_cond=image, |
|
conditioning_scale=controlnet_conditioning_scale, |
|
return_dict=False, |
|
) |
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=cond_tensor, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
).sample |
|
|
|
if do_classifier_free_guidance: |
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=uncond_tensor, |
|
controlnet_cond=image, |
|
conditioning_scale=controlnet_conditioning_scale, |
|
return_dict=False, |
|
) |
|
noise_pred_uncond = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=uncond_tensor, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
).sample |
|
noise_pred = noise_pred_uncond + weight * guidance_scale * (noise_pred - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
if output_type == "latent": |
|
image = latents |
|
has_nsfw_concept = None |
|
elif output_type == "pil": |
|
|
|
image = self.decode_latents(latents) |
|
|
|
|
|
image, has_nsfw_concept = self.run_safety_checker(image, self.unet.dtype) |
|
|
|
|
|
image = self.numpy_to_pil(image) |
|
else: |
|
|
|
image = self.decode_latents(latents) |
|
|
|
|
|
image, has_nsfw_concept = self.run_safety_checker(image, self.unet.dtype) |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
except Exception as e: |
|
raise ValueError(e) |
|
finally: |
|
if self.weights_has_changed: |
|
for sub_layer in self.text_encoder.sublayers(include_self=True): |
|
if hasattr(sub_layer, "backup_weights"): |
|
sub_layer.weight.copy_(sub_layer.backup_weights, True) |
|
for sub_layer in self.unet.sublayers(include_self=True): |
|
if hasattr(sub_layer, "backup_weights"): |
|
sub_layer.weight.copy_(sub_layer.backup_weights, True) |
|
self.weights_has_changed = False |
|
|
|
|
|
|
|
import math |
|
from collections import namedtuple |
|
|
|
|
|
class PromptChunk: |
|
""" |
|
This object contains token ids, weight (multipliers:1.4) and textual inversion embedding info for a chunk of prompt. |
|
If a prompt is short, it is represented by one PromptChunk, otherwise, multiple are necessary. |
|
Each PromptChunk contains an exact amount of tokens - 77, which includes one for start and end token, |
|
so just 75 tokens from prompt. |
|
""" |
|
|
|
def __init__(self): |
|
self.tokens = [] |
|
self.multipliers = [] |
|
self.fixes = [] |
|
|
|
|
|
PromptChunkFix = namedtuple("PromptChunkFix", ["offset", "embedding"]) |
|
"""An object of this type is a marker showing that textual inversion embedding's vectors have to placed at offset in the prompt |
|
chunk. Thos objects are found in PromptChunk.fixes and, are placed into FrozenCLIPEmbedderWithCustomWordsBase.hijack.fixes, and finally |
|
are applied by sd_hijack.EmbeddingsWithFixes's forward function.""" |
|
|
|
|
|
class FrozenCLIPEmbedder(nn.Layer): |
|
"""Uses the CLIP transformer encoder for text (from huggingface)""" |
|
|
|
LAYERS = ["last", "pooled", "hidden"] |
|
|
|
def __init__(self, text_encoder, tokenizer, freeze=True, layer="last", layer_idx=None): |
|
super().__init__() |
|
assert layer in self.LAYERS |
|
self.tokenizer = tokenizer |
|
self.text_encoder = text_encoder |
|
if freeze: |
|
self.freeze() |
|
self.layer = layer |
|
self.layer_idx = layer_idx |
|
if layer == "hidden": |
|
assert layer_idx is not None |
|
assert 0 <= abs(layer_idx) <= 12 |
|
|
|
def freeze(self): |
|
self.text_encoder.eval() |
|
for param in self.parameters(): |
|
param.stop_gradient = False |
|
|
|
def forward(self, text): |
|
batch_encoding = self.tokenizer( |
|
text, |
|
truncation=True, |
|
max_length=self.tokenizer.model_max_length, |
|
padding="max_length", |
|
return_tensors="pd", |
|
) |
|
tokens = batch_encoding["input_ids"] |
|
outputs = self.text_encoder(input_ids=tokens, output_hidden_states=self.layer == "hidden", return_dict=True) |
|
if self.layer == "last": |
|
z = outputs.last_hidden_state |
|
elif self.layer == "pooled": |
|
z = outputs.pooler_output[:, None, :] |
|
else: |
|
z = outputs.hidden_states[self.layer_idx] |
|
return z |
|
|
|
def encode(self, text): |
|
return self(text) |
|
|
|
|
|
class FrozenCLIPEmbedderWithCustomWordsBase(nn.Layer): |
|
"""A pytorch module that is a wrapper for FrozenCLIPEmbedder module. it enhances FrozenCLIPEmbedder, making it possible to |
|
have unlimited prompt length and assign weights to tokens in prompt. |
|
""" |
|
|
|
def __init__(self, wrapped, hijack): |
|
super().__init__() |
|
|
|
self.wrapped = wrapped |
|
"""Original FrozenCLIPEmbedder module; can also be FrozenOpenCLIPEmbedder or xlmr.BertSeriesModelWithTransformation, |
|
depending on model.""" |
|
|
|
self.hijack = hijack |
|
self.chunk_length = 75 |
|
|
|
def empty_chunk(self): |
|
"""creates an empty PromptChunk and returns it""" |
|
|
|
chunk = PromptChunk() |
|
chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1) |
|
chunk.multipliers = [1.0] * (self.chunk_length + 2) |
|
return chunk |
|
|
|
def get_target_prompt_token_count(self, token_count): |
|
"""returns the maximum number of tokens a prompt of a known length can have before it requires one more PromptChunk to be represented""" |
|
|
|
return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length |
|
|
|
def tokenize(self, texts): |
|
"""Converts a batch of texts into a batch of token ids""" |
|
|
|
raise NotImplementedError |
|
|
|
def encode_with_text_encoder(self, tokens): |
|
""" |
|
converts a batch of token ids (in python lists) into a single tensor with numeric respresentation of those tokens; |
|
All python lists with tokens are assumed to have same length, usually 77. |
|
if input is a list with B elements and each element has T tokens, expected output shape is (B, T, C), where C depends on |
|
model - can be 768 and 1024. |
|
Among other things, this call will read self.hijack.fixes, apply it to its inputs, and clear it (setting it to None). |
|
""" |
|
|
|
raise NotImplementedError |
|
|
|
def encode_embedding_init_text(self, init_text, nvpt): |
|
"""Converts text into a tensor with this text's tokens' embeddings. Note that those are embeddings before they are passed through |
|
transformers. nvpt is used as a maximum length in tokens. If text produces less teokens than nvpt, only this many is returned.""" |
|
|
|
raise NotImplementedError |
|
|
|
def tokenize_line(self, line): |
|
""" |
|
this transforms a single prompt into a list of PromptChunk objects - as many as needed to |
|
represent the prompt. |
|
Returns the list and the total number of tokens in the prompt. |
|
""" |
|
|
|
if WebUIStableDiffusionControlNetPipeline.enable_emphasis: |
|
parsed = parse_prompt_attention(line) |
|
else: |
|
parsed = [[line, 1.0]] |
|
|
|
tokenized = self.tokenize([text for text, _ in parsed]) |
|
|
|
chunks = [] |
|
chunk = PromptChunk() |
|
token_count = 0 |
|
last_comma = -1 |
|
|
|
def next_chunk(is_last=False): |
|
"""puts current chunk into the list of results and produces the next one - empty; |
|
if is_last is true, tokens <end-of-text> tokens at the end won't add to token_count""" |
|
nonlocal token_count |
|
nonlocal last_comma |
|
nonlocal chunk |
|
|
|
if is_last: |
|
token_count += len(chunk.tokens) |
|
else: |
|
token_count += self.chunk_length |
|
|
|
to_add = self.chunk_length - len(chunk.tokens) |
|
if to_add > 0: |
|
chunk.tokens += [self.id_end] * to_add |
|
chunk.multipliers += [1.0] * to_add |
|
|
|
chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end] |
|
chunk.multipliers = [1.0] + chunk.multipliers + [1.0] |
|
|
|
last_comma = -1 |
|
chunks.append(chunk) |
|
chunk = PromptChunk() |
|
|
|
for tokens, (text, weight) in zip(tokenized, parsed): |
|
if text == "BREAK" and weight == -1: |
|
next_chunk() |
|
continue |
|
|
|
position = 0 |
|
while position < len(tokens): |
|
token = tokens[position] |
|
|
|
if token == self.comma_token: |
|
last_comma = len(chunk.tokens) |
|
|
|
|
|
|
|
elif ( |
|
WebUIStableDiffusionControlNetPipeline.comma_padding_backtrack != 0 |
|
and len(chunk.tokens) == self.chunk_length |
|
and last_comma != -1 |
|
and len(chunk.tokens) - last_comma |
|
<= WebUIStableDiffusionControlNetPipeline.comma_padding_backtrack |
|
): |
|
break_location = last_comma + 1 |
|
|
|
reloc_tokens = chunk.tokens[break_location:] |
|
reloc_mults = chunk.multipliers[break_location:] |
|
|
|
chunk.tokens = chunk.tokens[:break_location] |
|
chunk.multipliers = chunk.multipliers[:break_location] |
|
|
|
next_chunk() |
|
chunk.tokens = reloc_tokens |
|
chunk.multipliers = reloc_mults |
|
|
|
if len(chunk.tokens) == self.chunk_length: |
|
next_chunk() |
|
|
|
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position( |
|
tokens, position |
|
) |
|
if embedding is None: |
|
chunk.tokens.append(token) |
|
chunk.multipliers.append(weight) |
|
position += 1 |
|
continue |
|
|
|
emb_len = int(embedding.vec.shape[0]) |
|
if len(chunk.tokens) + emb_len > self.chunk_length: |
|
next_chunk() |
|
|
|
chunk.fixes.append(PromptChunkFix(len(chunk.tokens), embedding)) |
|
|
|
chunk.tokens += [0] * emb_len |
|
chunk.multipliers += [weight] * emb_len |
|
position += embedding_length_in_tokens |
|
|
|
if len(chunk.tokens) > 0 or len(chunks) == 0: |
|
next_chunk(is_last=True) |
|
|
|
return chunks, token_count |
|
|
|
def process_texts(self, texts): |
|
""" |
|
Accepts a list of texts and calls tokenize_line() on each, with cache. Returns the list of results and maximum |
|
length, in tokens, of all texts. |
|
""" |
|
|
|
token_count = 0 |
|
|
|
cache = {} |
|
batch_chunks = [] |
|
for line in texts: |
|
if line in cache: |
|
chunks = cache[line] |
|
else: |
|
chunks, current_token_count = self.tokenize_line(line) |
|
token_count = max(current_token_count, token_count) |
|
|
|
cache[line] = chunks |
|
|
|
batch_chunks.append(chunks) |
|
|
|
return batch_chunks, token_count |
|
|
|
def forward(self, texts): |
|
""" |
|
Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts. |
|
Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will |
|
be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, and for SD2 it's 1024. |
|
An example shape returned by this function can be: (2, 77, 768). |
|
Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one elemenet |
|
is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream" |
|
""" |
|
|
|
batch_chunks, token_count = self.process_texts(texts) |
|
|
|
used_embeddings = {} |
|
chunk_count = max([len(x) for x in batch_chunks]) |
|
|
|
zs = [] |
|
for i in range(chunk_count): |
|
batch_chunk = [chunks[i] if i < len(chunks) else self.empty_chunk() for chunks in batch_chunks] |
|
|
|
tokens = [x.tokens for x in batch_chunk] |
|
multipliers = [x.multipliers for x in batch_chunk] |
|
self.hijack.fixes = [x.fixes for x in batch_chunk] |
|
|
|
for fixes in self.hijack.fixes: |
|
for position, embedding in fixes: |
|
used_embeddings[embedding.name] = embedding |
|
|
|
z = self.process_tokens(tokens, multipliers) |
|
zs.append(z) |
|
|
|
if len(used_embeddings) > 0: |
|
embeddings_list = ", ".join( |
|
[f"{name} [{embedding.checksum()}]" for name, embedding in used_embeddings.items()] |
|
) |
|
self.hijack.comments.append(f"Used embeddings: {embeddings_list}") |
|
|
|
return paddle.concat(zs, axis=1) |
|
|
|
def process_tokens(self, remade_batch_tokens, batch_multipliers): |
|
""" |
|
sends one single prompt chunk to be encoded by transformers neural network. |
|
remade_batch_tokens is a batch of tokens - a list, where every element is a list of tokens; usually |
|
there are exactly 77 tokens in the list. batch_multipliers is the same but for multipliers instead of tokens. |
|
Multipliers are used to give more or less weight to the outputs of transformers network. Each multiplier |
|
corresponds to one token. |
|
""" |
|
tokens = paddle.to_tensor(remade_batch_tokens) |
|
|
|
|
|
if self.id_end != self.id_pad: |
|
for batch_pos in range(len(remade_batch_tokens)): |
|
index = remade_batch_tokens[batch_pos].index(self.id_end) |
|
tokens[batch_pos, index + 1 : tokens.shape[1]] = self.id_pad |
|
|
|
z = self.encode_with_text_encoder(tokens) |
|
|
|
|
|
batch_multipliers = paddle.to_tensor(batch_multipliers) |
|
original_mean = z.mean() |
|
z = z * batch_multipliers.reshape( |
|
batch_multipliers.shape |
|
+ [ |
|
1, |
|
] |
|
).expand(z.shape) |
|
new_mean = z.mean() |
|
z = z * (original_mean / new_mean) |
|
|
|
return z |
|
|
|
|
|
class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase): |
|
def __init__(self, wrapped, hijack, CLIP_stop_at_last_layers=-1): |
|
super().__init__(wrapped, hijack) |
|
self.CLIP_stop_at_last_layers = CLIP_stop_at_last_layers |
|
self.tokenizer = wrapped.tokenizer |
|
|
|
vocab = self.tokenizer.get_vocab() |
|
|
|
self.comma_token = vocab.get(",</w>", None) |
|
|
|
self.token_mults = {} |
|
tokens_with_parens = [(k, v) for k, v in vocab.items() if "(" in k or ")" in k or "[" in k or "]" in k] |
|
for text, ident in tokens_with_parens: |
|
mult = 1.0 |
|
for c in text: |
|
if c == "[": |
|
mult /= 1.1 |
|
if c == "]": |
|
mult *= 1.1 |
|
if c == "(": |
|
mult *= 1.1 |
|
if c == ")": |
|
mult /= 1.1 |
|
|
|
if mult != 1.0: |
|
self.token_mults[ident] = mult |
|
|
|
self.id_start = self.wrapped.tokenizer.bos_token_id |
|
self.id_end = self.wrapped.tokenizer.eos_token_id |
|
self.id_pad = self.id_end |
|
|
|
def tokenize(self, texts): |
|
tokenized = self.wrapped.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"] |
|
|
|
return tokenized |
|
|
|
def encode_with_text_encoder(self, tokens): |
|
output_hidden_states = self.CLIP_stop_at_last_layers > 1 |
|
outputs = self.wrapped.text_encoder( |
|
input_ids=tokens, output_hidden_states=output_hidden_states, return_dict=True |
|
) |
|
|
|
if output_hidden_states: |
|
z = outputs.hidden_states[-self.CLIP_stop_at_last_layers] |
|
z = self.wrapped.text_encoder.text_model.ln_final(z) |
|
else: |
|
z = outputs.last_hidden_state |
|
|
|
return z |
|
|
|
def encode_embedding_init_text(self, init_text, nvpt): |
|
embedding_layer = self.wrapped.text_encoder.text_model |
|
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pd", add_special_tokens=False)[ |
|
"input_ids" |
|
] |
|
embedded = embedding_layer.token_embedding.wrapped(ids).squeeze(0) |
|
|
|
return embedded |
|
|
|
|
|
|
|
import re |
|
from collections import defaultdict |
|
|
|
|
|
class ExtraNetworkParams: |
|
def __init__(self, items=None): |
|
self.items = items or [] |
|
|
|
|
|
re_extra_net = re.compile(r"<(\w+):([^>]+)>") |
|
|
|
|
|
def parse_prompt(prompt): |
|
res = defaultdict(list) |
|
|
|
def found(m): |
|
name = m.group(1) |
|
args = m.group(2) |
|
|
|
res[name].append(ExtraNetworkParams(items=args.split(":"))) |
|
|
|
return "" |
|
|
|
prompt = re.sub(re_extra_net, found, prompt) |
|
|
|
return prompt, res |
|
|
|
|
|
def parse_prompts(prompts): |
|
res = [] |
|
extra_data = None |
|
|
|
for prompt in prompts: |
|
updated_prompt, parsed_extra_data = parse_prompt(prompt) |
|
|
|
if extra_data is None: |
|
extra_data = parsed_extra_data |
|
|
|
res.append(updated_prompt) |
|
|
|
return res, extra_data |
|
|
|
|
|
|
|
|
|
import base64 |
|
import json |
|
import zlib |
|
|
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
class EmbeddingDecoder(json.JSONDecoder): |
|
def __init__(self, *args, **kwargs): |
|
json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs) |
|
|
|
def object_hook(self, d): |
|
if "TORCHTENSOR" in d: |
|
return paddle.to_tensor(np.array(d["TORCHTENSOR"])) |
|
return d |
|
|
|
|
|
def embedding_from_b64(data): |
|
d = base64.b64decode(data) |
|
return json.loads(d, cls=EmbeddingDecoder) |
|
|
|
|
|
def lcg(m=2**32, a=1664525, c=1013904223, seed=0): |
|
while True: |
|
seed = (a * seed + c) % m |
|
yield seed % 255 |
|
|
|
|
|
def xor_block(block): |
|
g = lcg() |
|
randblock = np.array([next(g) for _ in range(np.product(block.shape))]).astype(np.uint8).reshape(block.shape) |
|
return np.bitwise_xor(block.astype(np.uint8), randblock & 0x0F) |
|
|
|
|
|
def crop_black(img, tol=0): |
|
mask = (img > tol).all(2) |
|
mask0, mask1 = mask.any(0), mask.any(1) |
|
col_start, col_end = mask0.argmax(), mask.shape[1] - mask0[::-1].argmax() |
|
row_start, row_end = mask1.argmax(), mask.shape[0] - mask1[::-1].argmax() |
|
return img[row_start:row_end, col_start:col_end] |
|
|
|
|
|
def extract_image_data_embed(image): |
|
d = 3 |
|
outarr = ( |
|
crop_black(np.array(image.convert("RGB").getdata()).reshape(image.size[1], image.size[0], d).astype(np.uint8)) |
|
& 0x0F |
|
) |
|
black_cols = np.where(np.sum(outarr, axis=(0, 2)) == 0) |
|
if black_cols[0].shape[0] < 2: |
|
print("No Image data blocks found.") |
|
return None |
|
|
|
data_block_lower = outarr[:, : black_cols[0].min(), :].astype(np.uint8) |
|
data_block_upper = outarr[:, black_cols[0].max() + 1 :, :].astype(np.uint8) |
|
|
|
data_block_lower = xor_block(data_block_lower) |
|
data_block_upper = xor_block(data_block_upper) |
|
|
|
data_block = (data_block_upper << 4) | (data_block_lower) |
|
data_block = data_block.flatten().tobytes() |
|
|
|
data = zlib.decompress(data_block) |
|
return json.loads(data, cls=EmbeddingDecoder) |
|
|
|
|
|
|
|
import re |
|
from collections import namedtuple |
|
from typing import List |
|
|
|
import lark |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
schedule_parser = lark.Lark( |
|
r""" |
|
!start: (prompt | /[][():]/+)* |
|
prompt: (emphasized | scheduled | alternate | plain | WHITESPACE)* |
|
!emphasized: "(" prompt ")" |
|
| "(" prompt ":" prompt ")" |
|
| "[" prompt "]" |
|
scheduled: "[" [prompt ":"] prompt ":" [WHITESPACE] NUMBER "]" |
|
alternate: "[" prompt ("|" prompt)+ "]" |
|
WHITESPACE: /\s+/ |
|
plain: /([^\\\[\]():|]|\\.)+/ |
|
%import common.SIGNED_NUMBER -> NUMBER |
|
""" |
|
) |
|
|
|
|
|
def get_learned_conditioning_prompt_schedules(prompts, steps): |
|
""" |
|
>>> g = lambda p: get_learned_conditioning_prompt_schedules([p], 10)[0] |
|
>>> g("test") |
|
[[10, 'test']] |
|
>>> g("a [b:3]") |
|
[[3, 'a '], [10, 'a b']] |
|
>>> g("a [b: 3]") |
|
[[3, 'a '], [10, 'a b']] |
|
>>> g("a [[[b]]:2]") |
|
[[2, 'a '], [10, 'a [[b]]']] |
|
>>> g("[(a:2):3]") |
|
[[3, ''], [10, '(a:2)']] |
|
>>> g("a [b : c : 1] d") |
|
[[1, 'a b d'], [10, 'a c d']] |
|
>>> g("a[b:[c:d:2]:1]e") |
|
[[1, 'abe'], [2, 'ace'], [10, 'ade']] |
|
>>> g("a [unbalanced") |
|
[[10, 'a [unbalanced']] |
|
>>> g("a [b:.5] c") |
|
[[5, 'a c'], [10, 'a b c']] |
|
>>> g("a [{b|d{:.5] c") # not handling this right now |
|
[[5, 'a c'], [10, 'a {b|d{ c']] |
|
>>> g("((a][:b:c [d:3]") |
|
[[3, '((a][:b:c '], [10, '((a][:b:c d']] |
|
>>> g("[a|(b:1.1)]") |
|
[[1, 'a'], [2, '(b:1.1)'], [3, 'a'], [4, '(b:1.1)'], [5, 'a'], [6, '(b:1.1)'], [7, 'a'], [8, '(b:1.1)'], [9, 'a'], [10, '(b:1.1)']] |
|
""" |
|
|
|
def collect_steps(steps, tree): |
|
l = [steps] |
|
|
|
class CollectSteps(lark.Visitor): |
|
def scheduled(self, tree): |
|
tree.children[-1] = float(tree.children[-1]) |
|
if tree.children[-1] < 1: |
|
tree.children[-1] *= steps |
|
tree.children[-1] = min(steps, int(tree.children[-1])) |
|
l.append(tree.children[-1]) |
|
|
|
def alternate(self, tree): |
|
l.extend(range(1, steps + 1)) |
|
|
|
CollectSteps().visit(tree) |
|
return sorted(set(l)) |
|
|
|
def at_step(step, tree): |
|
class AtStep(lark.Transformer): |
|
def scheduled(self, args): |
|
before, after, _, when = args |
|
yield before or () if step <= when else after |
|
|
|
def alternate(self, args): |
|
yield next(args[(step - 1) % len(args)]) |
|
|
|
def start(self, args): |
|
def flatten(x): |
|
if type(x) == str: |
|
yield x |
|
else: |
|
for gen in x: |
|
yield from flatten(gen) |
|
|
|
return "".join(flatten(args)) |
|
|
|
def plain(self, args): |
|
yield args[0].value |
|
|
|
def __default__(self, data, children, meta): |
|
for child in children: |
|
yield child |
|
|
|
return AtStep().transform(tree) |
|
|
|
def get_schedule(prompt): |
|
try: |
|
tree = schedule_parser.parse(prompt) |
|
except lark.exceptions.LarkError: |
|
if 0: |
|
import traceback |
|
|
|
traceback.print_exc() |
|
return [[steps, prompt]] |
|
return [[t, at_step(t, tree)] for t in collect_steps(steps, tree)] |
|
|
|
promptdict = {prompt: get_schedule(prompt) for prompt in set(prompts)} |
|
return [promptdict[prompt] for prompt in prompts] |
|
|
|
|
|
ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"]) |
|
|
|
|
|
def get_learned_conditioning(model, prompts, steps): |
|
"""converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond), |
|
and the sampling step at which this condition is to be replaced by the next one. |
|
|
|
Input: |
|
(model, ['a red crown', 'a [blue:green:5] jeweled crown'], 20) |
|
|
|
Output: |
|
[ |
|
[ |
|
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0523, ..., -0.4901, -0.3066, 0.0674], ..., [ 0.3317, -0.5102, -0.4066, ..., 0.4119, -0.7647, -1.0160]], device='cuda:0')) |
|
], |
|
[ |
|
ScheduledPromptConditioning(end_at_step=5, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.0192, 0.3867, -0.4644, ..., 0.1135, -0.3696, -0.4625]], device='cuda:0')), |
|
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.7352, -0.4356, -0.7888, ..., 0.6994, -0.4312, -1.2593]], device='cuda:0')) |
|
] |
|
] |
|
""" |
|
res = [] |
|
|
|
prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps) |
|
cache = {} |
|
|
|
for prompt, prompt_schedule in zip(prompts, prompt_schedules): |
|
|
|
cached = cache.get(prompt, None) |
|
if cached is not None: |
|
res.append(cached) |
|
continue |
|
|
|
texts = [x[1] for x in prompt_schedule] |
|
conds = model(texts) |
|
|
|
cond_schedule = [] |
|
for i, (end_at_step, text) in enumerate(prompt_schedule): |
|
cond_schedule.append(ScheduledPromptConditioning(end_at_step, conds[i])) |
|
|
|
cache[prompt] = cond_schedule |
|
res.append(cond_schedule) |
|
|
|
return res |
|
|
|
|
|
re_AND = re.compile(r"\bAND\b") |
|
re_weight = re.compile(r"^(.*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$") |
|
|
|
|
|
def get_multicond_prompt_list(prompts): |
|
res_indexes = [] |
|
|
|
prompt_flat_list = [] |
|
prompt_indexes = {} |
|
|
|
for prompt in prompts: |
|
subprompts = re_AND.split(prompt) |
|
|
|
indexes = [] |
|
for subprompt in subprompts: |
|
match = re_weight.search(subprompt) |
|
|
|
text, weight = match.groups() if match is not None else (subprompt, 1.0) |
|
|
|
weight = float(weight) if weight is not None else 1.0 |
|
|
|
index = prompt_indexes.get(text, None) |
|
if index is None: |
|
index = len(prompt_flat_list) |
|
prompt_flat_list.append(text) |
|
prompt_indexes[text] = index |
|
|
|
indexes.append((index, weight)) |
|
|
|
res_indexes.append(indexes) |
|
|
|
return res_indexes, prompt_flat_list, prompt_indexes |
|
|
|
|
|
class ComposableScheduledPromptConditioning: |
|
def __init__(self, schedules, weight=1.0): |
|
self.schedules: List[ScheduledPromptConditioning] = schedules |
|
self.weight: float = weight |
|
|
|
|
|
class MulticondLearnedConditioning: |
|
def __init__(self, shape, batch): |
|
self.shape: tuple = shape |
|
self.batch: List[List[ComposableScheduledPromptConditioning]] = batch |
|
|
|
|
|
def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning: |
|
"""same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt. |
|
For each prompt, the list is obtained by splitting the prompt using the AND separator. |
|
|
|
https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/ |
|
""" |
|
|
|
res_indexes, prompt_flat_list, prompt_indexes = get_multicond_prompt_list(prompts) |
|
|
|
learned_conditioning = get_learned_conditioning(model, prompt_flat_list, steps) |
|
|
|
res = [] |
|
for indexes in res_indexes: |
|
res.append([ComposableScheduledPromptConditioning(learned_conditioning[i], weight) for i, weight in indexes]) |
|
|
|
return MulticondLearnedConditioning(shape=(len(prompts),), batch=res) |
|
|
|
|
|
def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step): |
|
param = c[0][0].cond |
|
res = paddle.zeros( |
|
[ |
|
len(c), |
|
] |
|
+ param.shape, |
|
dtype=param.dtype, |
|
) |
|
for i, cond_schedule in enumerate(c): |
|
target_index = 0 |
|
for current, (end_at, cond) in enumerate(cond_schedule): |
|
if current_step <= end_at: |
|
target_index = current |
|
break |
|
res[i] = cond_schedule[target_index].cond |
|
|
|
return res |
|
|
|
|
|
def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step): |
|
param = c.batch[0][0].schedules[0].cond |
|
|
|
tensors = [] |
|
conds_list = [] |
|
|
|
for batch_no, composable_prompts in enumerate(c.batch): |
|
conds_for_batch = [] |
|
|
|
for cond_index, composable_prompt in enumerate(composable_prompts): |
|
target_index = 0 |
|
for current, (end_at, cond) in enumerate(composable_prompt.schedules): |
|
if current_step <= end_at: |
|
target_index = current |
|
break |
|
|
|
conds_for_batch.append((len(tensors), composable_prompt.weight)) |
|
tensors.append(composable_prompt.schedules[target_index].cond) |
|
|
|
conds_list.append(conds_for_batch) |
|
|
|
|
|
|
|
token_count = max([x.shape[0] for x in tensors]) |
|
for i in range(len(tensors)): |
|
if tensors[i].shape[0] != token_count: |
|
last_vector = tensors[i][-1:] |
|
last_vector_repeated = last_vector.tile([token_count - tensors[i].shape[0], 1]) |
|
tensors[i] = paddle.concat([tensors[i], last_vector_repeated], axis=0) |
|
|
|
return conds_list, paddle.stack(tensors).cast(dtype=param.dtype) |
|
|
|
|
|
re_attention = re.compile( |
|
r""" |
|
\\\(| |
|
\\\)| |
|
\\\[| |
|
\\]| |
|
\\\\| |
|
\\| |
|
\(| |
|
\[| |
|
:([+-]?[.\d]+)\)| |
|
\)| |
|
]| |
|
[^\\()\[\]:]+| |
|
: |
|
""", |
|
re.X, |
|
) |
|
|
|
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S) |
|
|
|
|
|
def parse_prompt_attention(text): |
|
""" |
|
Parses a string with attention tokens and returns a list of pairs: text and its associated weight. |
|
Accepted tokens are: |
|
(abc) - increases attention to abc by a multiplier of 1.1 |
|
(abc:3.12) - increases attention to abc by a multiplier of 3.12 |
|
[abc] - decreases attention to abc by a multiplier of 1.1 |
|
\( - literal character '(' |
|
\[ - literal character '[' |
|
\) - literal character ')' |
|
\] - literal character ']' |
|
\\ - literal character '\' |
|
anything else - just text |
|
|
|
>>> parse_prompt_attention('normal text') |
|
[['normal text', 1.0]] |
|
>>> parse_prompt_attention('an (important) word') |
|
[['an ', 1.0], ['important', 1.1], [' word', 1.0]] |
|
>>> parse_prompt_attention('(unbalanced') |
|
[['unbalanced', 1.1]] |
|
>>> parse_prompt_attention('\(literal\]') |
|
[['(literal]', 1.0]] |
|
>>> parse_prompt_attention('(unnecessary)(parens)') |
|
[['unnecessaryparens', 1.1]] |
|
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') |
|
[['a ', 1.0], |
|
['house', 1.5730000000000004], |
|
[' ', 1.1], |
|
['on', 1.0], |
|
[' a ', 1.1], |
|
['hill', 0.55], |
|
[', sun, ', 1.1], |
|
['sky', 1.4641000000000006], |
|
['.', 1.1]] |
|
""" |
|
|
|
res = [] |
|
round_brackets = [] |
|
square_brackets = [] |
|
|
|
round_bracket_multiplier = 1.1 |
|
square_bracket_multiplier = 1 / 1.1 |
|
|
|
def multiply_range(start_position, multiplier): |
|
for p in range(start_position, len(res)): |
|
res[p][1] *= multiplier |
|
|
|
for m in re_attention.finditer(text): |
|
text = m.group(0) |
|
weight = m.group(1) |
|
|
|
if text.startswith("\\"): |
|
res.append([text[1:], 1.0]) |
|
elif text == "(": |
|
round_brackets.append(len(res)) |
|
elif text == "[": |
|
square_brackets.append(len(res)) |
|
elif weight is not None and len(round_brackets) > 0: |
|
multiply_range(round_brackets.pop(), float(weight)) |
|
elif text == ")" and len(round_brackets) > 0: |
|
multiply_range(round_brackets.pop(), round_bracket_multiplier) |
|
elif text == "]" and len(square_brackets) > 0: |
|
multiply_range(square_brackets.pop(), square_bracket_multiplier) |
|
else: |
|
parts = re.split(re_break, text) |
|
for i, part in enumerate(parts): |
|
if i > 0: |
|
res.append(["BREAK", -1]) |
|
res.append([part, 1.0]) |
|
|
|
for pos in round_brackets: |
|
multiply_range(pos, round_bracket_multiplier) |
|
|
|
for pos in square_brackets: |
|
multiply_range(pos, square_bracket_multiplier) |
|
|
|
if len(res) == 0: |
|
res = [["", 1.0]] |
|
|
|
|
|
i = 0 |
|
while i + 1 < len(res): |
|
if res[i][1] == res[i + 1][1]: |
|
res[i][0] += res[i + 1][0] |
|
res.pop(i + 1) |
|
else: |
|
i += 1 |
|
|
|
return res |
|
|
|
|
|
|
|
|
|
|
|
class StableDiffusionModelHijack: |
|
fixes = None |
|
comments = [] |
|
layers = None |
|
circular_enabled = False |
|
|
|
def __init__(self, clip_model, embeddings_dir=None, CLIP_stop_at_last_layers=-1): |
|
model_embeddings = clip_model.text_encoder.text_model |
|
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self) |
|
clip_model = FrozenCLIPEmbedderWithCustomWords( |
|
clip_model, self, CLIP_stop_at_last_layers=CLIP_stop_at_last_layers |
|
) |
|
|
|
self.embedding_db = EmbeddingDatabase(clip_model) |
|
self.embedding_db.add_embedding_dir(embeddings_dir) |
|
|
|
|
|
self.clip = clip_model |
|
|
|
def flatten(el): |
|
flattened = [flatten(children) for children in el.children()] |
|
res = [el] |
|
for c in flattened: |
|
res += c |
|
return res |
|
|
|
self.layers = flatten(clip_model) |
|
|
|
def clear_comments(self): |
|
self.comments = [] |
|
|
|
def get_prompt_lengths(self, text): |
|
_, token_count = self.clip.process_texts([text]) |
|
|
|
return token_count, self.clip.get_target_prompt_token_count(token_count) |
|
|
|
|
|
class EmbeddingsWithFixes(nn.Layer): |
|
def __init__(self, wrapped, embeddings): |
|
super().__init__() |
|
self.wrapped = wrapped |
|
self.embeddings = embeddings |
|
|
|
def forward(self, input_ids): |
|
batch_fixes = self.embeddings.fixes |
|
self.embeddings.fixes = None |
|
|
|
inputs_embeds = self.wrapped(input_ids) |
|
|
|
if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0: |
|
return inputs_embeds |
|
|
|
vecs = [] |
|
for fixes, tensor in zip(batch_fixes, inputs_embeds): |
|
for offset, embedding in fixes: |
|
emb = embedding.vec.cast(self.wrapped.dtype) |
|
emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0]) |
|
tensor = paddle.concat([tensor[0 : offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len :]]) |
|
|
|
vecs.append(tensor) |
|
|
|
return paddle.stack(vecs) |
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
import traceback |
|
|
|
|
|
class Embedding: |
|
def __init__(self, vec, name, step=None): |
|
self.vec = vec |
|
self.name = name |
|
self.step = step |
|
self.shape = None |
|
self.vectors = 0 |
|
self.cached_checksum = None |
|
self.sd_checkpoint = None |
|
self.sd_checkpoint_name = None |
|
self.optimizer_state_dict = None |
|
self.filename = None |
|
|
|
def save(self, filename): |
|
embedding_data = { |
|
"string_to_token": {"*": 265}, |
|
"string_to_param": {"*": self.vec}, |
|
"name": self.name, |
|
"step": self.step, |
|
"sd_checkpoint": self.sd_checkpoint, |
|
"sd_checkpoint_name": self.sd_checkpoint_name, |
|
} |
|
|
|
paddle.save(embedding_data, filename) |
|
|
|
def checksum(self): |
|
if self.cached_checksum is not None: |
|
return self.cached_checksum |
|
|
|
def const_hash(a): |
|
r = 0 |
|
for v in a: |
|
r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF |
|
return r |
|
|
|
self.cached_checksum = f"{const_hash(self.vec.flatten() * 100) & 0xffff:04x}" |
|
return self.cached_checksum |
|
|
|
|
|
class DirWithTextualInversionEmbeddings: |
|
def __init__(self, path): |
|
self.path = path |
|
self.mtime = None |
|
|
|
def has_changed(self): |
|
if not os.path.isdir(self.path): |
|
return False |
|
|
|
mt = os.path.getmtime(self.path) |
|
if self.mtime is None or mt > self.mtime: |
|
return True |
|
|
|
def update(self): |
|
if not os.path.isdir(self.path): |
|
return |
|
|
|
self.mtime = os.path.getmtime(self.path) |
|
|
|
|
|
class EmbeddingDatabase: |
|
def __init__(self, clip): |
|
self.clip = clip |
|
self.ids_lookup = {} |
|
self.word_embeddings = {} |
|
self.skipped_embeddings = {} |
|
self.expected_shape = -1 |
|
self.embedding_dirs = {} |
|
self.previously_displayed_embeddings = () |
|
|
|
def add_embedding_dir(self, path): |
|
if path is not None: |
|
self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path) |
|
|
|
def clear_embedding_dirs(self): |
|
self.embedding_dirs.clear() |
|
|
|
def register_embedding(self, embedding, model): |
|
self.word_embeddings[embedding.name] = embedding |
|
|
|
ids = model.tokenize([embedding.name])[0] |
|
|
|
first_id = ids[0] |
|
if first_id not in self.ids_lookup: |
|
self.ids_lookup[first_id] = [] |
|
|
|
self.ids_lookup[first_id] = sorted( |
|
self.ids_lookup[first_id] + [(ids, embedding)], key=lambda x: len(x[0]), reverse=True |
|
) |
|
|
|
return embedding |
|
|
|
def get_expected_shape(self): |
|
vec = self.clip.encode_embedding_init_text(",", 1) |
|
return vec.shape[1] |
|
|
|
def load_from_file(self, path, filename): |
|
name, ext = os.path.splitext(filename) |
|
ext = ext.upper() |
|
|
|
if ext in [".PNG", ".WEBP", ".JXL", ".AVIF"]: |
|
_, second_ext = os.path.splitext(name) |
|
if second_ext.upper() == ".PREVIEW": |
|
return |
|
|
|
embed_image = Image.open(path) |
|
if hasattr(embed_image, "text") and "sd-ti-embedding" in embed_image.text: |
|
data = embedding_from_b64(embed_image.text["sd-ti-embedding"]) |
|
name = data.get("name", name) |
|
else: |
|
data = extract_image_data_embed(embed_image) |
|
if data: |
|
name = data.get("name", name) |
|
else: |
|
|
|
return |
|
elif ext in [".BIN", ".PT"]: |
|
data = torch_load(path) |
|
elif ext in [".SAFETENSORS"]: |
|
data = safetensors_load(path) |
|
else: |
|
return |
|
|
|
|
|
if "string_to_param" in data: |
|
param_dict = data["string_to_param"] |
|
if hasattr(param_dict, "_parameters"): |
|
param_dict = getattr(param_dict, "_parameters") |
|
assert len(param_dict) == 1, "embedding file has multiple terms in it" |
|
emb = next(iter(param_dict.items()))[1] |
|
|
|
elif type(data) == dict and type(next(iter(data.values()))) == paddle.Tensor: |
|
assert len(data.keys()) == 1, "embedding file has multiple terms in it" |
|
|
|
emb = next(iter(data.values())) |
|
if len(emb.shape) == 1: |
|
emb = emb.unsqueeze(0) |
|
else: |
|
raise Exception( |
|
f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept." |
|
) |
|
|
|
with paddle.no_grad(): |
|
if hasattr(emb, "detach"): |
|
emb = emb.detach() |
|
if hasattr(emb, "cpu"): |
|
emb = emb.cpu() |
|
if hasattr(emb, "numpy"): |
|
emb = emb.numpy() |
|
emb = paddle.to_tensor(emb) |
|
vec = emb.detach().cast(paddle.float32) |
|
embedding = Embedding(vec, name) |
|
embedding.step = data.get("step", None) |
|
embedding.sd_checkpoint = data.get("sd_checkpoint", None) |
|
embedding.sd_checkpoint_name = data.get("sd_checkpoint_name", None) |
|
embedding.vectors = vec.shape[0] |
|
embedding.shape = vec.shape[-1] |
|
embedding.filename = path |
|
|
|
if self.expected_shape == -1 or self.expected_shape == embedding.shape: |
|
self.register_embedding(embedding, self.clip) |
|
else: |
|
self.skipped_embeddings[name] = embedding |
|
|
|
def load_from_dir(self, embdir): |
|
if not os.path.isdir(embdir.path): |
|
return |
|
|
|
for root, dirs, fns in os.walk(embdir.path, followlinks=True): |
|
for fn in fns: |
|
try: |
|
fullfn = os.path.join(root, fn) |
|
|
|
if os.stat(fullfn).st_size == 0: |
|
continue |
|
|
|
self.load_from_file(fullfn, fn) |
|
except Exception: |
|
print(f"Error loading embedding {fn}:", file=sys.stderr) |
|
print(traceback.format_exc(), file=sys.stderr) |
|
continue |
|
|
|
def load_textual_inversion_embeddings(self, force_reload=False): |
|
if not force_reload: |
|
need_reload = False |
|
for path, embdir in self.embedding_dirs.items(): |
|
if embdir.has_changed(): |
|
need_reload = True |
|
break |
|
|
|
if not need_reload: |
|
return |
|
|
|
self.ids_lookup.clear() |
|
self.word_embeddings.clear() |
|
self.skipped_embeddings.clear() |
|
self.expected_shape = self.get_expected_shape() |
|
|
|
for path, embdir in self.embedding_dirs.items(): |
|
self.load_from_dir(embdir) |
|
embdir.update() |
|
|
|
displayed_embeddings = (tuple(self.word_embeddings.keys()), tuple(self.skipped_embeddings.keys())) |
|
if self.previously_displayed_embeddings != displayed_embeddings: |
|
self.previously_displayed_embeddings = displayed_embeddings |
|
print( |
|
f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}" |
|
) |
|
if len(self.skipped_embeddings) > 0: |
|
print( |
|
f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}" |
|
) |
|
|
|
def find_embedding_at_position(self, tokens, offset): |
|
token = tokens[offset] |
|
possible_matches = self.ids_lookup.get(token, None) |
|
|
|
if possible_matches is None: |
|
return None, None |
|
|
|
for ids, embedding in possible_matches: |
|
if tokens[offset : offset + len(ids)] == ids: |
|
return embedding, len(ids) |
|
|
|
return None, None |
|
|