junnyu commited on
Commit
7af9548
1 Parent(s): bd88b6c

Upload pipeline.py

Browse files
Files changed (1) hide show
  1. pipeline.py +910 -0
pipeline.py ADDED
@@ -0,0 +1,910 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
2
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+
17
+ import inspect
18
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
19
+
20
+ import numpy as np
21
+ import paddle
22
+ import PIL.Image
23
+
24
+ from paddlenlp.transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
25
+ from ppdiffusers.image_processor import VaeImageProcessor
26
+ from ppdiffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
27
+ from ppdiffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
28
+ from ppdiffusers.pipeline_utils import DiffusionPipeline
29
+ from ppdiffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
30
+ from ppdiffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import (
31
+ MultiControlNetModel,
32
+ )
33
+ from ppdiffusers.pipelines.stable_diffusion.safety_checker import (
34
+ StableDiffusionSafetyChecker,
35
+ )
36
+ from ppdiffusers.schedulers import KarrasDiffusionSchedulers
37
+ from ppdiffusers.utils import (
38
+ deprecate,
39
+ logging,
40
+ randn_tensor,
41
+ replace_example_docstring,
42
+ )
43
+
44
+
45
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
46
+
47
+
48
+ EXAMPLE_DOC_STRING = """
49
+ Examples:
50
+ ```py
51
+ >>> # !pip install opencv-python paddlenlp
52
+ >>> from ppdiffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, UniPCMultistepScheduler
53
+ >>> from ppdiffusers.utils import load_image
54
+ >>> import numpy as np
55
+ >>> import paddle
56
+
57
+ >>> import cv2
58
+ >>> from PIL import Image
59
+
60
+ >>> # download an image
61
+ >>> image = load_image(
62
+ ... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
63
+ ... )
64
+ >>> np_image = np.array(image)
65
+
66
+ >>> # get canny image
67
+ >>> np_image = cv2.Canny(np_image, 100, 200)
68
+ >>> np_image = np_image[:, :, None]
69
+ >>> np_image = np.concatenate([np_image, np_image, np_image], axis=2)
70
+ >>> canny_image = Image.fromarray(np_image)
71
+
72
+ >>> # load control net and stable diffusion v1-5
73
+ >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", paddle_dtype=paddle.float16)
74
+ >>> pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
75
+ ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, paddle_dtype=paddle.float16
76
+ ... )
77
+
78
+ >>> # speed up diffusion process with faster scheduler and memory optimization
79
+ >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
80
+
81
+ >>> # generate image
82
+ >>> generator = paddle.Generaotr().manual_seed(0)
83
+ >>> image = pipe(
84
+ ... "futuristic-looking woman",
85
+ ... num_inference_steps=20,
86
+ ... generator=generator,
87
+ ... image=image,
88
+ ... control_image=canny_image,
89
+ ... ).images[0]
90
+ >>> image.save("demo.png")
91
+ ```
92
+ """
93
+
94
+
95
+ class StableDiffusionControlNetImg2ImgPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
96
+ r"""
97
+ Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
98
+
99
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
100
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
101
+
102
+ In addition the pipeline inherits the following loading methods:
103
+ - *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
104
+
105
+ Args:
106
+ vae ([`AutoencoderKL`]):
107
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
108
+ text_encoder ([`CLIPTextModel`]):
109
+ Frozen text-encoder. Stable Diffusion uses the text portion of
110
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
111
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
112
+ tokenizer (`CLIPTokenizer`):
113
+ Tokenizer of class
114
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
115
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
116
+ controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
117
+ Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets
118
+ as a list, the outputs from each ControlNet are added together to create one combined additional
119
+ conditioning.
120
+ scheduler ([`SchedulerMixin`]):
121
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
122
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
123
+ safety_checker ([`StableDiffusionSafetyChecker`]):
124
+ Classification module that estimates whether generated images could be considered offensive or harmful.
125
+ Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
126
+ feature_extractor ([`CLIPImageProcessor`]):
127
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
128
+ """
129
+ _optional_components = ["safety_checker", "feature_extractor"]
130
+
131
+ def __init__(
132
+ self,
133
+ vae: AutoencoderKL,
134
+ text_encoder: CLIPTextModel,
135
+ tokenizer: CLIPTokenizer,
136
+ unet: UNet2DConditionModel,
137
+ controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
138
+ scheduler: KarrasDiffusionSchedulers,
139
+ safety_checker: StableDiffusionSafetyChecker,
140
+ feature_extractor: CLIPImageProcessor,
141
+ requires_safety_checker: bool = True,
142
+ ):
143
+ super().__init__()
144
+
145
+ if safety_checker is None and requires_safety_checker:
146
+ logger.warning(
147
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
148
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
149
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
150
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
151
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
152
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
153
+ )
154
+
155
+ if safety_checker is not None and feature_extractor is None:
156
+ raise ValueError(
157
+ f"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
158
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
159
+ )
160
+
161
+ if isinstance(controlnet, (list, tuple)):
162
+ controlnet = MultiControlNetModel(controlnet)
163
+
164
+ self.register_modules(
165
+ vae=vae,
166
+ text_encoder=text_encoder,
167
+ tokenizer=tokenizer,
168
+ unet=unet,
169
+ controlnet=controlnet,
170
+ scheduler=scheduler,
171
+ safety_checker=safety_checker,
172
+ feature_extractor=feature_extractor,
173
+ )
174
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
175
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
176
+ self.control_image_processor = VaeImageProcessor(
177
+ vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
178
+ )
179
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
180
+
181
+ def _encode_prompt(
182
+ self,
183
+ prompt,
184
+ num_images_per_prompt,
185
+ do_classifier_free_guidance,
186
+ negative_prompt=None,
187
+ prompt_embeds: Optional[paddle.Tensor] = None,
188
+ negative_prompt_embeds: Optional[paddle.Tensor] = None,
189
+ lora_scale: Optional[float] = None,
190
+ ):
191
+ r"""
192
+ Encodes the prompt into text encoder hidden states.
193
+
194
+ Args:
195
+ prompt (`str` or `List[str]`, *optional*):
196
+ prompt to be encoded
197
+ num_images_per_prompt (`int`):
198
+ number of images that should be generated per prompt
199
+ do_classifier_free_guidance (`bool`):
200
+ whether to use classifier free guidance or not
201
+ negative_prompt (`str` or `List[str]`, *optional*):
202
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
203
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
204
+ less than `1`).
205
+ prompt_embeds (`paddle.Tensor`, *optional*):
206
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
207
+ provided, text embeddings will be generated from `prompt` input argument.
208
+ negative_prompt_embeds (`paddle.Tensor`, *optional*):
209
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
210
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
211
+ argument.
212
+ lora_scale (`float`, *optional*):
213
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
214
+ """
215
+ # set lora scale so that monkey patched LoRA
216
+ # function of text encoder can correctly access it
217
+ if lora_scale is not None and isinstance(self, LoraLoaderMixin):
218
+ self._lora_scale = lora_scale
219
+
220
+ if prompt is not None and isinstance(prompt, str):
221
+ batch_size = 1
222
+ elif prompt is not None and isinstance(prompt, list):
223
+ batch_size = len(prompt)
224
+ else:
225
+ batch_size = prompt_embeds.shape[0]
226
+
227
+ if prompt_embeds is None:
228
+ # textual inversion: procecss multi-vector tokens if necessary
229
+ if isinstance(self, TextualInversionLoaderMixin):
230
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
231
+
232
+ text_inputs = self.tokenizer(
233
+ prompt,
234
+ padding="max_length",
235
+ max_length=self.tokenizer.model_max_length,
236
+ truncation=True,
237
+ return_tensors="pd",
238
+ )
239
+ text_input_ids = text_inputs.input_ids
240
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pd").input_ids
241
+
242
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not paddle.equal_all(
243
+ text_input_ids, untruncated_ids
244
+ ):
245
+ removed_text = self.tokenizer.batch_decode(
246
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
247
+ )
248
+ logger.warning(
249
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
250
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
251
+ )
252
+
253
+ config = (
254
+ self.text_encoder.config
255
+ if isinstance(self.text_encoder.config, dict)
256
+ else self.text_encoder.config.to_dict()
257
+ )
258
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
259
+ attention_mask = text_inputs.attention_mask
260
+ else:
261
+ attention_mask = None
262
+
263
+ prompt_embeds = self.text_encoder(
264
+ text_input_ids,
265
+ attention_mask=attention_mask,
266
+ )
267
+ prompt_embeds = prompt_embeds[0]
268
+
269
+ prompt_embeds = prompt_embeds.cast(dtype=self.text_encoder.dtype)
270
+
271
+ bs_embed, seq_len, _ = prompt_embeds.shape
272
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
273
+ prompt_embeds = prompt_embeds.tile([1, num_images_per_prompt, 1])
274
+ prompt_embeds = prompt_embeds.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
275
+
276
+ # get unconditional embeddings for classifier free guidance
277
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
278
+ uncond_tokens: List[str]
279
+ if negative_prompt is None:
280
+ uncond_tokens = [""] * batch_size
281
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
282
+ raise TypeError(
283
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
284
+ f" {type(prompt)}."
285
+ )
286
+ elif isinstance(negative_prompt, str):
287
+ uncond_tokens = [negative_prompt]
288
+ elif batch_size != len(negative_prompt):
289
+ raise ValueError(
290
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
291
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
292
+ " the batch size of `prompt`."
293
+ )
294
+ else:
295
+ uncond_tokens = negative_prompt
296
+
297
+ # textual inversion: procecss multi-vector tokens if necessary
298
+ if isinstance(self, TextualInversionLoaderMixin):
299
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
300
+
301
+ max_length = prompt_embeds.shape[1]
302
+ uncond_input = self.tokenizer(
303
+ uncond_tokens,
304
+ padding="max_length",
305
+ max_length=max_length,
306
+ truncation=True,
307
+ return_tensors="pd",
308
+ )
309
+
310
+ config = (
311
+ self.text_encoder.config
312
+ if isinstance(self.text_encoder.config, dict)
313
+ else self.text_encoder.config.to_dict()
314
+ )
315
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
316
+ attention_mask = uncond_input.attention_mask
317
+ else:
318
+ attention_mask = None
319
+
320
+ negative_prompt_embeds = self.text_encoder(
321
+ uncond_input.input_ids,
322
+ attention_mask=attention_mask,
323
+ )
324
+ negative_prompt_embeds = negative_prompt_embeds[0]
325
+
326
+ if do_classifier_free_guidance:
327
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
328
+ seq_len = negative_prompt_embeds.shape[1]
329
+
330
+ negative_prompt_embeds = negative_prompt_embeds.cast(dtype=self.text_encoder.dtype)
331
+
332
+ negative_prompt_embeds = negative_prompt_embeds.tile([1, num_images_per_prompt, 1])
333
+ negative_prompt_embeds = negative_prompt_embeds.reshape([batch_size * num_images_per_prompt, seq_len, -1])
334
+
335
+ # For classifier free guidance, we need to do two forward passes.
336
+ # Here we concatenate the unconditional and text embeddings into a single batch
337
+ # to avoid doing two forward passes
338
+ prompt_embeds = paddle.concat([negative_prompt_embeds, prompt_embeds])
339
+
340
+ return prompt_embeds
341
+
342
+ def run_safety_checker(self, image, dtype):
343
+ if self.safety_checker is None:
344
+ has_nsfw_concept = None
345
+ else:
346
+ if paddle.is_tensor(image):
347
+ feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
348
+ else:
349
+ feature_extractor_input = self.image_processor.numpy_to_pil(image)
350
+ safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pd")
351
+ image, has_nsfw_concept = self.safety_checker(
352
+ images=image, clip_input=safety_checker_input.pixel_values.cast(dtype)
353
+ )
354
+ return image, has_nsfw_concept
355
+
356
+ def prepare_extra_step_kwargs(self, generator, eta):
357
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
358
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
359
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
360
+ # and should be between [0, 1]
361
+
362
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
363
+ extra_step_kwargs = {}
364
+ if accepts_eta:
365
+ extra_step_kwargs["eta"] = eta
366
+
367
+ # check if the scheduler accepts generator
368
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
369
+ if accepts_generator:
370
+ extra_step_kwargs["generator"] = generator
371
+ return extra_step_kwargs
372
+
373
+ def check_inputs(
374
+ self,
375
+ prompt,
376
+ image,
377
+ callback_steps,
378
+ negative_prompt=None,
379
+ prompt_embeds=None,
380
+ negative_prompt_embeds=None,
381
+ controlnet_conditioning_scale=1.0,
382
+ ):
383
+ if (callback_steps is None) or (
384
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
385
+ ):
386
+ raise ValueError(
387
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
388
+ f" {type(callback_steps)}."
389
+ )
390
+
391
+ if prompt is not None and prompt_embeds is not None:
392
+ raise ValueError(
393
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
394
+ " only forward one of the two."
395
+ )
396
+ elif prompt is None and prompt_embeds is None:
397
+ raise ValueError(
398
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
399
+ )
400
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
401
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
402
+
403
+ if negative_prompt is not None and negative_prompt_embeds is not None:
404
+ raise ValueError(
405
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
406
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
407
+ )
408
+
409
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
410
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
411
+ raise ValueError(
412
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
413
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
414
+ f" {negative_prompt_embeds.shape}."
415
+ )
416
+
417
+ # `prompt` needs more sophisticated handling when there are multiple
418
+ # conditionings.
419
+ if isinstance(self.controlnet, MultiControlNetModel):
420
+ if isinstance(prompt, list):
421
+ logger.warning(
422
+ f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
423
+ " prompts. The conditionings will be fixed across the prompts."
424
+ )
425
+
426
+ if isinstance(self.controlnet, ControlNetModel):
427
+ self.check_image(image, prompt, prompt_embeds)
428
+ elif isinstance(self.controlnet, MultiControlNetModel):
429
+ if not isinstance(image, list):
430
+ raise TypeError("For multiple controlnets: `image` must be type `list`")
431
+
432
+ # When `image` is a nested list:
433
+ # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
434
+ elif any(isinstance(i, list) for i in image):
435
+ raise ValueError("A single batch of multiple conditionings are supported at the moment.")
436
+ elif len(image) != len(self.controlnet.nets):
437
+ raise ValueError(
438
+ f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
439
+ )
440
+
441
+ for image_ in image:
442
+ self.check_image(image_, prompt, prompt_embeds)
443
+ else:
444
+ assert False
445
+
446
+ # Check `controlnet_conditioning_scale`
447
+ if isinstance(self.controlnet, ControlNetModel):
448
+ if not isinstance(controlnet_conditioning_scale, float):
449
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
450
+ elif isinstance(self.controlnet, MultiControlNetModel):
451
+ if isinstance(controlnet_conditioning_scale, list):
452
+ if any(isinstance(i, list) for i in controlnet_conditioning_scale):
453
+ raise ValueError("A single batch of multiple conditionings are supported at the moment.")
454
+ elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
455
+ self.controlnet.nets
456
+ ):
457
+ raise ValueError(
458
+ "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
459
+ " the same length as the number of controlnets"
460
+ )
461
+ else:
462
+ assert False
463
+
464
+ def check_image(self, image, prompt, prompt_embeds):
465
+ image_is_pil = isinstance(image, PIL.Image.Image)
466
+ image_is_tensor = isinstance(image, paddle.Tensor)
467
+ image_is_np = isinstance(image, np.ndarray)
468
+ image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
469
+ image_is_tensor_list = isinstance(image, list) and isinstance(image[0], paddle.Tensor)
470
+ image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
471
+
472
+ if (
473
+ not image_is_pil
474
+ and not image_is_tensor
475
+ and not image_is_np
476
+ and not image_is_pil_list
477
+ and not image_is_tensor_list
478
+ and not image_is_np_list
479
+ ):
480
+ raise TypeError(
481
+ f"image must be passed and be one of PIL image, numpy array, paddle tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
482
+ )
483
+
484
+ if image_is_pil:
485
+ image_batch_size = 1
486
+ else:
487
+ image_batch_size = len(image)
488
+
489
+ if prompt is not None and isinstance(prompt, str):
490
+ prompt_batch_size = 1
491
+ elif prompt is not None and isinstance(prompt, list):
492
+ prompt_batch_size = len(prompt)
493
+ elif prompt_embeds is not None:
494
+ prompt_batch_size = prompt_embeds.shape[0]
495
+
496
+ if image_batch_size != 1 and image_batch_size != prompt_batch_size:
497
+ raise ValueError(
498
+ f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
499
+ )
500
+
501
+ def prepare_control_image(
502
+ self,
503
+ image,
504
+ width,
505
+ height,
506
+ batch_size,
507
+ num_images_per_prompt,
508
+ dtype,
509
+ do_classifier_free_guidance=False,
510
+ guess_mode=False,
511
+ ):
512
+ image = self.control_image_processor.preprocess(image, height=height, width=width).cast(dtype=paddle.float32)
513
+ image_batch_size = image.shape[0]
514
+
515
+ if image_batch_size == 1:
516
+ repeat_by = batch_size
517
+ else:
518
+ # image batch size is the same as prompt batch size
519
+ repeat_by = num_images_per_prompt
520
+
521
+ image = image.repeat_interleave(repeat_by, axis=0)
522
+
523
+ image = image.cast(dtype)
524
+
525
+ if do_classifier_free_guidance and not guess_mode:
526
+ image = paddle.concat([image] * 2)
527
+
528
+ return image
529
+
530
+ def get_timesteps(self, num_inference_steps, strength):
531
+ # get the original timestep using init_timestep
532
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
533
+
534
+ t_start = max(num_inference_steps - init_timestep, 0)
535
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
536
+
537
+ return timesteps, num_inference_steps - t_start
538
+
539
+ def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, generator=None):
540
+ if not isinstance(image, (paddle.Tensor, PIL.Image.Image, list)):
541
+ raise ValueError(
542
+ f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
543
+ )
544
+
545
+ image = image.cast(dtype=dtype)
546
+
547
+ batch_size = batch_size * num_images_per_prompt
548
+
549
+ if image.shape[1] == 4:
550
+ init_latents = image
551
+
552
+ else:
553
+ if isinstance(generator, list) and len(generator) != batch_size:
554
+ raise ValueError(
555
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
556
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
557
+ )
558
+
559
+ elif isinstance(generator, list):
560
+ init_latents = [
561
+ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
562
+ ]
563
+ init_latents = paddle.concat(init_latents, axis=0)
564
+ else:
565
+ init_latents = self.vae.encode(image).latent_dist.sample(generator)
566
+
567
+ init_latents = self.vae.config.scaling_factor * init_latents
568
+
569
+ if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
570
+ # expand init_latents for batch_size
571
+ deprecation_message = (
572
+ f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
573
+ " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
574
+ " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
575
+ " your script to pass as many initial images as text prompts to suppress this warning."
576
+ )
577
+ deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
578
+ additional_image_per_prompt = batch_size // init_latents.shape[0]
579
+ init_latents = paddle.concat([init_latents] * additional_image_per_prompt, axis=0)
580
+ elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
581
+ raise ValueError(
582
+ f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
583
+ )
584
+ else:
585
+ init_latents = paddle.concat([init_latents], axis=0)
586
+
587
+ shape = init_latents.shape
588
+ noise = randn_tensor(shape, generator=generator, dtype=dtype)
589
+
590
+ # get latents
591
+ init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
592
+ latents = init_latents
593
+
594
+ return latents
595
+
596
+ @paddle.no_grad()
597
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
598
+ def __call__(
599
+ self,
600
+ prompt: Union[str, List[str]] = None,
601
+ image: Union[
602
+ paddle.Tensor,
603
+ PIL.Image.Image,
604
+ np.ndarray,
605
+ List[paddle.Tensor],
606
+ List[PIL.Image.Image],
607
+ List[np.ndarray],
608
+ ] = None,
609
+ control_image: Union[
610
+ paddle.Tensor,
611
+ PIL.Image.Image,
612
+ np.ndarray,
613
+ List[paddle.Tensor],
614
+ List[PIL.Image.Image],
615
+ List[np.ndarray],
616
+ ] = None,
617
+ height: Optional[int] = None,
618
+ width: Optional[int] = None,
619
+ strength: float = 0.8,
620
+ num_inference_steps: int = 50,
621
+ guidance_scale: float = 7.5,
622
+ negative_prompt: Optional[Union[str, List[str]]] = None,
623
+ num_images_per_prompt: Optional[int] = 1,
624
+ eta: float = 0.0,
625
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
626
+ latents: Optional[paddle.Tensor] = None,
627
+ prompt_embeds: Optional[paddle.Tensor] = None,
628
+ negative_prompt_embeds: Optional[paddle.Tensor] = None,
629
+ output_type: Optional[str] = "pil",
630
+ return_dict: bool = True,
631
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
632
+ callback_steps: int = 1,
633
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
634
+ controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
635
+ guess_mode: bool = False,
636
+ ):
637
+ r"""
638
+ Function invoked when calling the pipeline for generation.
639
+
640
+ Args:
641
+ prompt (`str` or `List[str]`, *optional*):
642
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
643
+ instead.
644
+ image (`paddle.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[paddle.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
645
+ `List[List[paddle.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
646
+ The initial image will be used as the starting point for the image generation process. Can also accpet
647
+ image latents as `image`, if passing latents directly, it will not be encoded again.
648
+ control_image (`paddle.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[paddle.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
649
+ `List[List[paddle.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
650
+ The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
651
+ the type is specified as `paddle.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
652
+ also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
653
+ height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
654
+ specified in init, images must be passed as a list such that each element of the list can be correctly
655
+ batched for input to a single controlnet.
656
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
657
+ The height in pixels of the generated image.
658
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
659
+ The width in pixels of the generated image.
660
+ num_inference_steps (`int`, *optional*, defaults to 50):
661
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
662
+ expense of slower inference.
663
+ guidance_scale (`float`, *optional*, defaults to 7.5):
664
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
665
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
666
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
667
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
668
+ usually at the expense of lower image quality.
669
+ negative_prompt (`str` or `List[str]`, *optional*):
670
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
671
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
672
+ less than `1`).
673
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
674
+ The number of images to generate per prompt.
675
+ eta (`float`, *optional*, defaults to 0.0):
676
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
677
+ [`schedulers.DDIMScheduler`], will be ignored for others.
678
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
679
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
680
+ to make generation deterministic.
681
+ latents (`paddle.Tensor`, *optional*):
682
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
683
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
684
+ tensor will ge generated by sampling using the supplied random `generator`.
685
+ prompt_embeds (`paddle.Tensor`, *optional*):
686
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
687
+ provided, text embeddings will be generated from `prompt` input argument.
688
+ negative_prompt_embeds (`paddle.Tensor`, *optional*):
689
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
690
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
691
+ argument.
692
+ output_type (`str`, *optional*, defaults to `"pil"`):
693
+ The output format of the generate image. Choose between
694
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
695
+ return_dict (`bool`, *optional*, defaults to `True`):
696
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
697
+ plain tuple.
698
+ callback (`Callable`, *optional*):
699
+ A function that will be called every `callback_steps` steps during inference. The function will be
700
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
701
+ callback_steps (`int`, *optional*, defaults to 1):
702
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
703
+ called at every step.
704
+ cross_attention_kwargs (`dict`, *optional*):
705
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
706
+ `self.processor` in
707
+ [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
708
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
709
+ The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
710
+ to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
711
+ corresponding scale as a list. Note that by default, we use a smaller conditioning scale for inpainting
712
+ than for [`~StableDiffusionControlNetPipeline.__call__`].
713
+ guess_mode (`bool`, *optional*, defaults to `False`):
714
+ In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
715
+ you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
716
+
717
+ Examples:
718
+
719
+ Returns:
720
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
721
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
722
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
723
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
724
+ (nsfw) content, according to the `safety_checker`.
725
+ """
726
+ # 1. Check inputs. Raise error if not correct
727
+ self.check_inputs(
728
+ prompt,
729
+ control_image,
730
+ callback_steps,
731
+ negative_prompt,
732
+ prompt_embeds,
733
+ negative_prompt_embeds,
734
+ controlnet_conditioning_scale,
735
+ )
736
+
737
+ # 2. Define call parameters
738
+ if prompt is not None and isinstance(prompt, str):
739
+ batch_size = 1
740
+ elif prompt is not None and isinstance(prompt, list):
741
+ batch_size = len(prompt)
742
+ else:
743
+ batch_size = prompt_embeds.shape[0]
744
+
745
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
746
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
747
+ # corresponds to doing no classifier free guidance.
748
+ do_classifier_free_guidance = guidance_scale > 1.0
749
+
750
+ controlnet = self.controlnet
751
+
752
+ if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
753
+ controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
754
+
755
+ global_pool_conditions = (
756
+ controlnet.config.global_pool_conditions
757
+ if isinstance(controlnet, ControlNetModel)
758
+ else controlnet.nets[0].config.global_pool_conditions
759
+ )
760
+ guess_mode = guess_mode or global_pool_conditions
761
+
762
+ # 3. Encode input prompt
763
+ text_encoder_lora_scale = (
764
+ cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
765
+ )
766
+ prompt_embeds = self._encode_prompt(
767
+ prompt,
768
+ num_images_per_prompt,
769
+ do_classifier_free_guidance,
770
+ negative_prompt,
771
+ prompt_embeds=prompt_embeds,
772
+ negative_prompt_embeds=negative_prompt_embeds,
773
+ lora_scale=text_encoder_lora_scale,
774
+ )
775
+ # 4. Prepare image
776
+ image = self.image_processor.preprocess(image).cast(dtype=paddle.float32)
777
+
778
+ # 5. Prepare controlnet_conditioning_image
779
+ if isinstance(controlnet, ControlNetModel):
780
+ control_image = self.prepare_control_image(
781
+ image=control_image,
782
+ width=width,
783
+ height=height,
784
+ batch_size=batch_size * num_images_per_prompt,
785
+ num_images_per_prompt=num_images_per_prompt,
786
+ dtype=controlnet.dtype,
787
+ do_classifier_free_guidance=do_classifier_free_guidance,
788
+ guess_mode=guess_mode,
789
+ )
790
+ elif isinstance(controlnet, MultiControlNetModel):
791
+ control_images = []
792
+
793
+ for control_image_ in control_image:
794
+ control_image_ = self.prepare_control_image(
795
+ image=control_image_,
796
+ width=width,
797
+ height=height,
798
+ batch_size=batch_size * num_images_per_prompt,
799
+ num_images_per_prompt=num_images_per_prompt,
800
+ dtype=controlnet.dtype,
801
+ do_classifier_free_guidance=do_classifier_free_guidance,
802
+ guess_mode=guess_mode,
803
+ )
804
+
805
+ control_images.append(control_image_)
806
+
807
+ control_image = control_images
808
+ else:
809
+ assert False
810
+
811
+ # 5. Prepare timesteps
812
+ self.scheduler.set_timesteps(
813
+ num_inference_steps,
814
+ )
815
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
816
+ latent_timestep = timesteps[:1].tile([batch_size * num_images_per_prompt])
817
+
818
+ # 6. Prepare latent variables
819
+ latents = self.prepare_latents(
820
+ image,
821
+ latent_timestep,
822
+ batch_size,
823
+ num_images_per_prompt,
824
+ prompt_embeds.dtype,
825
+ generator,
826
+ )
827
+
828
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
829
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
830
+
831
+ # 8. Denoising loop
832
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
833
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
834
+ for i, t in enumerate(timesteps):
835
+ # expand the latents if we are doing classifier free guidance
836
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
837
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
838
+
839
+ # controlnet(s) inference
840
+ if guess_mode and do_classifier_free_guidance:
841
+ # Infer ControlNet only for the conditional batch.
842
+ control_model_input = latents
843
+ control_model_input = self.scheduler.scale_model_input(control_model_input, t)
844
+ controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
845
+ else:
846
+ control_model_input = latent_model_input
847
+ controlnet_prompt_embeds = prompt_embeds
848
+
849
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
850
+ control_model_input,
851
+ t,
852
+ encoder_hidden_states=controlnet_prompt_embeds,
853
+ controlnet_cond=control_image,
854
+ conditioning_scale=controlnet_conditioning_scale,
855
+ guess_mode=guess_mode,
856
+ return_dict=False,
857
+ )
858
+
859
+ if guess_mode and do_classifier_free_guidance:
860
+ # Infered ControlNet only for the conditional batch.
861
+ # To apply the output of ControlNet to both the unconditional and conditional batches,
862
+ # add 0 to the unconditional batch to keep it unchanged.
863
+ down_block_res_samples = [paddle.concat([paddle.zeros_like(d), d]) for d in down_block_res_samples]
864
+ mid_block_res_sample = paddle.concat(
865
+ [paddle.zeros_like(mid_block_res_sample), mid_block_res_sample]
866
+ )
867
+
868
+ # predict the noise residual
869
+ noise_pred = self.unet(
870
+ latent_model_input,
871
+ t,
872
+ encoder_hidden_states=prompt_embeds,
873
+ cross_attention_kwargs=cross_attention_kwargs,
874
+ down_block_additional_residuals=down_block_res_samples,
875
+ mid_block_additional_residual=mid_block_res_sample,
876
+ return_dict=False,
877
+ )[0]
878
+
879
+ # perform guidance
880
+ if do_classifier_free_guidance:
881
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
882
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
883
+
884
+ # compute the previous noisy sample x_t -> x_t-1
885
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
886
+
887
+ # call the callback, if provided
888
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
889
+ progress_bar.update()
890
+ if callback is not None and i % callback_steps == 0:
891
+ callback(i, t, latents)
892
+
893
+ if not output_type == "latent":
894
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
895
+ image, has_nsfw_concept = self.run_safety_checker(image, prompt_embeds.dtype)
896
+ else:
897
+ image = latents
898
+ has_nsfw_concept = None
899
+
900
+ if has_nsfw_concept is None:
901
+ do_denormalize = [True] * image.shape[0]
902
+ else:
903
+ do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
904
+
905
+ image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
906
+
907
+ if not return_dict:
908
+ return (image, has_nsfw_concept)
909
+
910
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)