update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/wav2vec2-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- minds14
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: my_awesome_mind
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Audio Classification
|
15 |
+
type: audio-classification
|
16 |
+
dataset:
|
17 |
+
name: minds14
|
18 |
+
type: minds14
|
19 |
+
config: en-US
|
20 |
+
split: train
|
21 |
+
args: en-US
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.061946902654867256
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# my_awesome_mind
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 2.6657
|
36 |
+
- Accuracy: 0.0619
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 3e-05
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 128
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 10
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| No log | 0.8 | 3 | 2.6406 | 0.0708 |
|
71 |
+
| No log | 1.87 | 7 | 2.6497 | 0.0885 |
|
72 |
+
| 2.635 | 2.93 | 11 | 2.6532 | 0.0531 |
|
73 |
+
| 2.635 | 4.0 | 15 | 2.6612 | 0.0265 |
|
74 |
+
| 2.635 | 4.8 | 18 | 2.6621 | 0.0265 |
|
75 |
+
| 2.6225 | 5.87 | 22 | 2.6622 | 0.0531 |
|
76 |
+
| 2.6225 | 6.93 | 26 | 2.6650 | 0.0442 |
|
77 |
+
| 2.6054 | 8.0 | 30 | 2.6657 | 0.0619 |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- Transformers 4.31.0
|
83 |
+
- Pytorch 2.0.1+cu118
|
84 |
+
- Datasets 2.14.0
|
85 |
+
- Tokenizers 0.13.3
|