junkmind commited on
Commit
12e623e
·
1 Parent(s): 7d1d753

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/wav2vec2-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - minds14
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: my_awesome_mind
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: minds14
18
+ type: minds14
19
+ config: en-US
20
+ split: train
21
+ args: en-US
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.061946902654867256
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # my_awesome_mind
32
+
33
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 2.6657
36
+ - Accuracy: 0.0619
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 3e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 128
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 10
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | No log | 0.8 | 3 | 2.6406 | 0.0708 |
71
+ | No log | 1.87 | 7 | 2.6497 | 0.0885 |
72
+ | 2.635 | 2.93 | 11 | 2.6532 | 0.0531 |
73
+ | 2.635 | 4.0 | 15 | 2.6612 | 0.0265 |
74
+ | 2.635 | 4.8 | 18 | 2.6621 | 0.0265 |
75
+ | 2.6225 | 5.87 | 22 | 2.6622 | 0.0531 |
76
+ | 2.6225 | 6.93 | 26 | 2.6650 | 0.0442 |
77
+ | 2.6054 | 8.0 | 30 | 2.6657 | 0.0619 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.31.0
83
+ - Pytorch 2.0.1+cu118
84
+ - Datasets 2.14.0
85
+ - Tokenizers 0.13.3