File size: 6,856 Bytes
e72dc7c
1b53e0f
163db08
7df89e1
 
1b53e0f
 
 
 
 
 
 
 
 
 
 
 
7df89e1
1b53e0f
 
 
 
 
 
b3f9993
1b53e0f
 
 
 
 
 
 
 
 
 
 
 
 
e72dc7c
 
1b53e0f
 
b3f9993
e72dc7c
 
1b53e0f
 
 
 
 
e72dc7c
 
b18e680
163db08
a380e1d
163db08
d0b93db
 
 
 
 
 
a380e1d
eeb5506
a380e1d
f091ca6
1b53e0f
f091ca6
27c6a86
1b53e0f
 
 
 
 
 
 
27c6a86
 
1b53e0f
83078d9
a380e1d
f091ca6
1b53e0f
b18e680
1b53e0f
c909430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b53e0f
163db08
5b91a3b
 
c909430
b18e680
5b91a3b
564c962
5b91a3b
c909430
 
5b91a3b
564c962
5b91a3b
 
 
564c962
 
5b91a3b
 
 
f80a6d9
5b91a3b
 
 
 
 
 
1733f36
5b91a3b
b18e680
 
 
1b53e0f
 
 
 
 
 
 
 
 
 
a380e1d
1b53e0f
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
---
language:
- en
- de
- fr
- zh 
- it
- es
- hi 
- bn
- ar
- ru 
- uk
- pt
- ur
- id
- ja
- ne
- nl
- tr
- ca
- bg
- yue

widget:
- text: >-
    In December 1903 in France the Royal Swedish Academy of Sciences awarded
    Pierre Curie, Marie Curie, and Henri Becquerel the Nobel Prize in Physics.
- text: >-
    Für Richard Phillips Feynman war es immer wichtig in New York, die
    unanschaulichen Gesetzmäßigkeiten der Quantenphysik Laien und Studenten
    nahezubringen und verständlich zu machen.
- text: >-
    Terence David John Pratchett est né le 28 avril 1948 à Beaconsfield dans le
    Buckinghamshire, en Angleterre.
- text: >-
    北京市,通称北京(汉语拼音:Běijīng;邮政式拼音:Peking),简称“京”,是中华人民共和国的首都及直辖市,是该国的政治、文化、科技、教育、军事和国际交往中心,是一座全球城市,是世界人口第三多的城市和人口最多的首都,具有重要的国际影响力,同時也是目前世界唯一的“双奥之城”,即唯一既主办过夏季

tags:
- roberta
- ner
- nlp
license: mit
datasets:
- wikiann
metrics:
- f1
- precision
- accuracy
- recall
---

# RoBERTa for Multilingual Named Entity Recognition

## Model Description

This model detects entities by classifying every token according to the IOB format:

```python
['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
```

You can find the code in [this](https://github.com/julianschelb/roberta-ner-multilingual) GitHub repository.

## Training Data

This model was fine-tuned on a portion of the [wikiann](https://huggingface.co/datasets/wikiann) dataset corresponding to the following languages:

```python
["en","de", "fr",
 "zh", "it", "es",
 "hi", "bn", "ar",
 "ru", "uk", "pt",
 "ur", "id", "ja",
 "ne", "nl", "tr",
 "ca", "bg", "zh-yue"]
```

The model was fine-tuned on 375.100 sentences in the training set, with a validation set of 173.100 examples. Performance metrics reported are based on additional 173.100 examples. The complete WikiANN dataset includes training examples for 282 languages and was constructed from Wikipedia. Training examples are extracted in an automated manner, exploiting entities mentioned in Wikipedia articles, often are formatted as hyperlinks to the source article. Provided NER tags are in the IOB2 format. Named entities are classified as location (LOC), person (PER), or organization (ORG). 

## Evaluation Results

This model achieves the following results (meassured using the test split of the [wikiann](https://huggingface.co/datasets/wikiann) dataset):

```python
{'LOC': {'f1': 0.8994491397524903,
         'number': 184430,
         'precision': 0.8941572985543279,
         'recall': 0.9048039906739684},
 'ORG': {'f1': 0.829114679375883,
         'number': 129760,
         'precision': 0.8283525257886599,
         'recall': 0.8298782367447596},
 'PER': {'f1': 0.9115096398413828,
         'number': 130471,
         'precision': 0.9043545174723882,
         'recall': 0.9187788857293958},
 'overall_accuracy': 0.9398182274831388,
 'overall_f1': 0.8825581369330908,
 'overall_precision': 0.8781215422873389,
 'overall_recall': 0.8870397898623895}
```

## Usage

You can load this model by using the AutoTokenize and AutoModelForTokenClassification classes:

```python
from transformers import AutoTokenizer, AutoModelForTokenClassification 

tokenizer = AutoTokenizer.from_pretrained("julian-schelb/roberta-ner-multilingual/", add_prefix_space=True)                          
model = AutoModelForTokenClassification.from_pretrained("julian-schelb/roberta-ner-multilingual/")

text = "In December 1903 in France the Royal Swedish Academy of Sciences awarded Pierre Curie, Marie Curie, and Henri Becquerel the Nobel Prize in Physics."

inputs = tokenizer(
    text, 
    add_special_tokens=False, 
    return_tensors="pt"
)

with torch.no_grad():
    logits = model(**inputs).logits

predicted_token_class_ids = logits.argmax(-1)

# Note that tokens are classified rather then input words which means that
# there might be more predicted token classes than words.
# Multiple token classes might account for the same word
predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
predicted_tokens_classes
```


## About RoBERTa

This model is a fine-tuned version of [XLM-RoBERTa](https://huggingface.co/xlm-roberta-large). The original model was pre-trained on 2.5TB of filtered CommonCrawl data containing 100 languages. It was introduced in the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Conneau et al. and first released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/xlmr). 

RoBERTa is a transformers model pretrained on a large corpus in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts.

More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence.

This way, the model learns an inner representation of 100 languages that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the XLM-RoBERTa model as inputs.

#### Limitations and Bias

This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains.  

## Related Papers

* Pan, X., Zhang, B., May, J., Nothman, J., Knight, K., & Ji, H. (2017). Cross-lingual Name Tagging and Linking for 282 Languages. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1946–1958). Association for Computational Linguistics.
* Rahimi, A., Li, Y., & Cohn, T. (2019). Massively Multilingual Transfer for NER. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 151–164). Association for Computational Linguistics.
* Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V.. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach.