Transformers
PyTorch
vilt
Inference Endpoints
File size: 2,200 Bytes
25ac766
 
 
a8a05cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
---

# Vision-and-Language Transformer (ViLT), fine-tuned on VSR zeroshot split

Vision-and-Language Transformer (ViLT) model fine-tuned on zeroshot split of [Visual Spatial Reasoning (VSR)](https://arxiv.org/abs/2205.00363). ViLT was introduced in the paper [ViLT: Vision-and-Language Transformer
Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT).

## Intended uses & limitations

You can use the model to determine whether a sentence is true or false given an image.

### How to use

Here is how to use the model in PyTorch:

```
from transformers import ViltProcessor, ViltForImagesAndTextClassification
import requests
from PIL import Image

image = Image.open(requests.get("https://camo.githubusercontent.com/ffcbeada14077b8e6d4b16817c91f78ba50aace210a1e4754418f1413d99797f/687474703a2f2f696d616765732e636f636f646174617365742e6f72672f747261696e323031372f3030303030303038303333362e6a7067", stream=True).raw)
text = "The person is ahead of the cow."

processor = ViltProcessor.from_pretrained("juletxara/vilt-vsr-zeroshot")
model = ViltForImagesAndTextClassification.from_pretrained("juletxara/vilt-vsr-zeroshot")

# prepare inputs
encoding = processor(image, text, return_tensors="pt")

# forward pass
outputs = model(input_ids=encoding.input_ids, pixel_values=encoding.pixel_values.unsqueeze(0))
logits = outputs.logits
idx = logits.argmax(-1).item()
print("Predicted answer:", model.config.id2label[idx])
```

## Training data

(to do)

## Training procedure

### Preprocessing

(to do)

### Pretraining

(to do)

## Evaluation results

(to do)

### BibTeX entry and citation info

```bibtex
@misc{kim2021vilt,
      title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision}, 
      author={Wonjae Kim and Bokyung Son and Ildoo Kim},
      year={2021},
      eprint={2102.03334},
      archivePrefix={arXiv},
      primaryClass={stat.ML}
}

@article{liu2022visual,
  title={Visual Spatial Reasoning},
  author={Liu, Fangyu and Emerson, Guy and Collier, Nigel},
  journal={arXiv preprint arXiv:2205.00363},
  year={2022}
}
```