judithrosell
commited on
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: google-bert/bert-base-uncased
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: VF_BERT_ST_1000
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# VF_BERT_ST_1000
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.1765
|
25 |
+
- Precision: 0.9705
|
26 |
+
- Recall: 0.9755
|
27 |
+
- F1: 0.9730
|
28 |
+
- Accuracy: 0.9636
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 2e-05
|
48 |
+
- train_batch_size: 32
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 10
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
+
| No log | 1.0 | 259 | 0.1575 | 0.9595 | 0.9658 | 0.9626 | 0.9503 |
|
60 |
+
| 0.2118 | 2.0 | 518 | 0.1388 | 0.9660 | 0.9743 | 0.9701 | 0.9597 |
|
61 |
+
| 0.2118 | 3.0 | 777 | 0.1366 | 0.9688 | 0.9734 | 0.9711 | 0.9613 |
|
62 |
+
| 0.0546 | 4.0 | 1036 | 0.1488 | 0.9673 | 0.9726 | 0.9699 | 0.9603 |
|
63 |
+
| 0.0546 | 5.0 | 1295 | 0.1663 | 0.9675 | 0.9736 | 0.9705 | 0.9609 |
|
64 |
+
| 0.0251 | 6.0 | 1554 | 0.1673 | 0.9685 | 0.9750 | 0.9717 | 0.9628 |
|
65 |
+
| 0.0251 | 7.0 | 1813 | 0.1708 | 0.9707 | 0.9753 | 0.9730 | 0.9639 |
|
66 |
+
| 0.0133 | 8.0 | 2072 | 0.1707 | 0.9701 | 0.9742 | 0.9721 | 0.9631 |
|
67 |
+
| 0.0133 | 9.0 | 2331 | 0.1771 | 0.9703 | 0.9754 | 0.9728 | 0.9635 |
|
68 |
+
| 0.0094 | 10.0 | 2590 | 0.1765 | 0.9705 | 0.9755 | 0.9730 | 0.9636 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.44.2
|
74 |
+
- Pytorch 2.4.0+cu121
|
75 |
+
- Datasets 2.21.0
|
76 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 435642228
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55ad98e7fffff2601b7e83ca5f3e70cc83a2ccc2021a3ae31093294f2154375b
|
3 |
size 435642228
|
runs/Sep05_13-26-13_2b2d4314c76e/events.out.tfevents.1725542800.2b2d4314c76e.3947.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:799ec291d6a217c29bb4697c8556e3f6139e16e58440edc955a7e9ce5940f6ee
|
3 |
+
size 12122
|