jucamohedano
commited on
Commit
·
d705874
1
Parent(s):
96fbcda
LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +21 -21
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +4 -4
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 257.39 +/- 26.05
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f59d856ae50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f59d856aee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f59d856af70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f59d84ef040>", "_build": "<function ActorCriticPolicy._build at 0x7f59d84ef0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f59d84ef160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f59d84ef1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f59d84ef280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f59d84ef310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f59d84ef3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f59d84ef430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f59d84ef4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f59d8562f60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673803485847727496, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADbtL3h6KS6xnOGOlxiijYlkrE6o86auQAAgD8AAIA/zQRSPBRsmLpoU2u7ksAJNwYVozoAcni2AACAPwAAgD/N9p28HDN4PzI7HL12GBq/dxX7PIcUjD0AAAAAAAAAABj0jr6NXn695nSOvImnUbt4ZNk+QWYRPAAAgD8AAIA/TdjWPQqXezi6djA8fGMYu6TizDm4XHQ8AAAAAAAAAAAalvY+TWbCvetQxjwT65y7HFXBvstw5rsAAIA/AACAP1o1Yr6haxS9PtySvGcOObvh64M+5D8JPAAAgD8AAIA/wHJ+Pp99mjwpRcO63e4oufFsJj4CAPI5AACAPwAAgD/NwR+9CtcpOIzUljk6TZu1sRMPuww/trgAAIA/AACAP4BCH71lnaw/AiZDvzVpG79BpsQ8UslnPAAAAAAAAAAA82NQPnSdyrxgoYs8KiQMuxFvML5C/Ni7AACAPwAAgD9mTVo9uGapuaPX7Lohswq2PuJKuW6PCDoAAIA/AACAPwDtGD5DrXM/FPQEPgRVAL+9UWA9haKfvQAAAAAAAAAATRaVPSm4OrrOOju66UYHtS+BA7rIS1U5AACAPwAAgD9Aa8I9wwEcuvBbFDzvzgy2R01FO+kSBrUAAIA/AACAP5roK70bUoS8/TX1PTo3u72tYuW93QWYvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVYodjUP/RUCUhpRSlIwBbJRLyIwBdJRHQIgnLiZOSGJ1fZQoaAZoCWgPQwiKWMSww01dQJSGlFKUaBVN6ANoFkdAiC93ztkWh3V9lChoBmgJaA9DCB5Td2WX/WFAlIaUUpRoFU3oA2gWR0CIL/pL26CldX2UKGgGaAloD0MIjPLMy2FeYUCUhpRSlGgVTegDaBZHQIhpkAeaKDV1fZQoaAZoCWgPQwgTfT7KiBlaQJSGlFKUaBVN6ANoFkdAiHo8eS0SiHV9lChoBmgJaA9DCJc48kBkF1pAlIaUUpRoFU3oA2gWR0CIeoIY3vQXdX2UKGgGaAloD0MIN6eSAaD2OkCUhpRSlGgVS6JoFkdAiH5/wiJO33V9lChoBmgJaA9DCIGWrmAbJ1lAlIaUUpRoFU3oA2gWR0CIgV4SHuZ1dX2UKGgGaAloD0MI+DQnLzKjQsCUhpRSlGgVTaUBaBZHQIiC5pSJj2B1fZQoaAZoCWgPQwhuowG8BZJBQJSGlFKUaBVLm2gWR0CIjLZHNHH4dX2UKGgGaAloD0MI/OO9amXqKkCUhpRSlGgVS9VoFkdAiJNj1GsmwHV9lChoBmgJaA9DCIRhwJKrqmBAlIaUUpRoFU3oA2gWR0CImKB/7SApdX2UKGgGaAloD0MIQGzp0VQ1YUCUhpRSlGgVTegDaBZHQIiafC/Glyl1fZQoaAZoCWgPQwgJa2PshFldQJSGlFKUaBVN6ANoFkdAiJ0m2b5M13V9lChoBmgJaA9DCP2GiQap9GNAlIaUUpRoFU3oA2gWR0CInlSUkfLcdX2UKGgGaAloD0MIumbyzTafIsCUhpRSlGgVS9hoFkdAiKv5wXIlt3V9lChoBmgJaA9DCFpIwOjyilhAlIaUUpRoFU3oA2gWR0CIrajMV1wHdX2UKGgGaAloD0MIbynni72VX0CUhpRSlGgVTegDaBZHQIiyzMs6JZZ1fZQoaAZoCWgPQwgxQni0ccldQJSGlFKUaBVN6ANoFkdAiLiGVzIV/XV9lChoBmgJaA9DCLBYw0Xui1xAlIaUUpRoFU3oA2gWR0CIuzF85S3tdX2UKGgGaAloD0MI7Zv7q8epYkCUhpRSlGgVTegDaBZHQIjFdk6Lfk51fZQoaAZoCWgPQwhrgqj7APpiQJSGlFKUaBVN6ANoFkdAiM3YxcmjTXV9lChoBmgJaA9DCKRUwhN6OWdAlIaUUpRoFU3oA2gWR0CIzmS3b212dX2UKGgGaAloD0MIkiBcAYWNY0CUhpRSlGgVTegDaBZHQIkeNVghKUV1fZQoaAZoCWgPQwiGIAclzN1hQJSGlFKUaBVN6ANoFkdAiSG2mxdIG3V9lChoBmgJaA9DCE8+PbblYWBAlIaUUpRoFU3oA2gWR0CJI6UTtb9qdX2UKGgGaAloD0MIWDm0yPYQZECUhpRSlGgVTegDaBZHQIkuk6tDD0l1fZQoaAZoCWgPQwjsFKsGYZFiQJSGlFKUaBVN6ANoFkdAiTrA9FF2FHV9lChoBmgJaA9DCP29FB40IzjAlIaUUpRoFUvKaBZHQIk7am4y44J1fZQoaAZoCWgPQwhVNNb+zsYoQJSGlFKUaBVLvWgWR0CJO446wMYudX2UKGgGaAloD0MI1nH8UGnEYkCUhpRSlGgVTegDaBZHQIk8qfzz3AV1fZQoaAZoCWgPQwj/CS5W1MVeQJSGlFKUaBVN6ANoFkdAiT8b5mAbynV9lChoBmgJaA9DCNTuVwE+mGVAlIaUUpRoFU3oA2gWR0CJQDlzU7SzdX2UKGgGaAloD0MInnk57L4QX0CUhpRSlGgVTegDaBZHQIlMLSuyNXJ1fZQoaAZoCWgPQwgGEalpF81lQJSGlFKUaBVN6ANoFkdAiU2w+MZP23V9lChoBmgJaA9DCM5uLZPhFDRAlIaUUpRoFUu7aBZHQIlOafxtpEh1fZQoaAZoCWgPQwgDste7P8o2QJSGlFKUaBVLv2gWR0CJTurd30PIdX2UKGgGaAloD0MIIAn7dhJiXkCUhpRSlGgVTegDaBZHQIlSBZSvTw51fZQoaAZoCWgPQwhrgT0mUloKQJSGlFKUaBVLyWgWR0CJU0jdHlOodX2UKGgGaAloD0MIaM2Pv7T+ZUCUhpRSlGgVTegDaBZHQIlW9yYG+sZ1fZQoaAZoCWgPQwhsdw/QfRJUQJSGlFKUaBVN6ANoFkdAiVkUkGA09HV9lChoBmgJaA9DCNY6cTne3WZAlIaUUpRoFU3oA2gWR0CJYavEjxCqdX2UKGgGaAloD0MIgBE0ZpLBYECUhpRSlGgVTegDaBZHQIlpCGahHsl1fZQoaAZoCWgPQwjGvmTjwddhQJSGlFKUaBVN6ANoFkdAiWmZDJEH+3V9lChoBmgJaA9DCJiIt86/PSVAlIaUUpRoFUuQaBZHQImfnzOHFgl1fZQoaAZoCWgPQwgaaam8HaVRQJSGlFKUaBVN6ANoFkdAibdEXDWK/HV9lChoBmgJaA9DCGywcJLm1GJAlIaUUpRoFU3oA2gWR0CJx9mFrVOLdX2UKGgGaAloD0MIUBvV6cAVYECUhpRSlGgVTegDaBZHQInVmTJQtSR1fZQoaAZoCWgPQwi9APvo1IFhQJSGlFKUaBVN6ANoFkdAidfZD7ZWaXV9lChoBmgJaA9DCI4hADh26mBAlIaUUpRoFU3oA2gWR0CJ3Ji3G4qgdX2UKGgGaAloD0MIVDVB1H3MWUCUhpRSlGgVTegDaBZHQInrylLvkR11fZQoaAZoCWgPQwhuT5DYbsBiQJSGlFKUaBVN6ANoFkdAie2ZFXq7iHV9lChoBmgJaA9DCPfq46HvQV9AlIaUUpRoFU3oA2gWR0CJ7nndO6/ZdX2UKGgGaAloD0MIWOVC5V9JY0CUhpRSlGgVTegDaBZHQInvE5n13+x1fZQoaAZoCWgPQwjoobYNI5pgQJSGlFKUaBVN6ANoFkdAifImb1AZ9HV9lChoBmgJaA9DCCDrqdVXo0tAlIaUUpRoFU3oA2gWR0CJ83OUMXrMdX2UKGgGaAloD0MIVn+EYcDwV0CUhpRSlGgVTegDaBZHQIn3HE87p3Z1fZQoaAZoCWgPQwhz9zk+WvtbQJSGlFKUaBVN6ANoFkdAifkgIQe3hHV9lChoBmgJaA9DCG+cFOY9PhJAlIaUUpRoFUuUaBZHQIn7ukrPMSt1fZQoaAZoCWgPQwi4sdmRavRgQJSGlFKUaBVN6ANoFkdAigCvva11GXV9lChoBmgJaA9DCGnJ42n5HUpAlIaUUpRoFUunaBZHQIoCIH7gsK91fZQoaAZoCWgPQwjwxKwXQ3kSQJSGlFKUaBVLsGgWR0CKBkKNyYG/dX2UKGgGaAloD0MIh8CRQAMlZECUhpRSlGgVTegDaBZHQIoHP2bobGZ1fZQoaAZoCWgPQwjzkCkfAm5nQJSGlFKUaBVN6ANoFkdAijtu32EkB3V9lChoBmgJaA9DCINQ3sfRfA/AlIaUUpRoFUu7aBZHQIo/9nPE87p1fZQoaAZoCWgPQwhwCcA/pSZKQJSGlFKUaBVN6ANoFkdAilI9dmg8KXV9lChoBmgJaA9DCJJaKJmc9lxAlIaUUpRoFU3oA2gWR0CKYfh/iHZcdX2UKGgGaAloD0MIkpbK2xE+GsCUhpRSlGgVS6NoFkdAimdGWldka3V9lChoBmgJaA9DCAfSxaaVuVlAlIaUUpRoFU3oA2gWR0CKbuoESuhcdX2UKGgGaAloD0MIQPz89+DLXECUhpRSlGgVTegDaBZHQIpw+dCmdiF1fZQoaAZoCWgPQwhZwW9DjNpfQJSGlFKUaBVN6ANoFkdAinT4z7/GVHV9lChoBmgJaA9DCL+aAwRzDmFAlIaUUpRoFU3oA2gWR0CKg1UzbeuWdX2UKGgGaAloD0MIpOL/jqimYUCUhpRSlGgVTegDaBZHQIqFt72L5yl1fZQoaAZoCWgPQwjSNCiaB1deQJSGlFKUaBVN6ANoFkdAioZMYVIqb3V9lChoBmgJaA9DCOnzUUZciGJAlIaUUpRoFU3oA2gWR0CKibix3V0+dX2UKGgGaAloD0MIhUGZRpNXY0CUhpRSlGgVTegDaBZHQIqRY3Lmp2l1fZQoaAZoCWgPQwgW3uUivqdaQJSGlFKUaBVN6ANoFkdAipR+jmCAc3V9lChoBmgJaA9DCFG8ytomXWJAlIaUUpRoFU3oA2gWR0CKmi2rn1WbdX2UKGgGaAloD0MItmlsr4UrZECUhpRSlGgVTegDaBZHQIqbvkvK2a51fZQoaAZoCWgPQwjgaMcNP5ZjQJSGlFKUaBVN6ANoFkdAiqEfcFhXsHV9lChoBmgJaA9DCM+8HHbfLmVAlIaUUpRoFU3oA2gWR0CKr3EuxrzodX2UKGgGaAloD0MI51YIqzEkY0CUhpRSlGgVTegDaBZHQIrYWdXko4N1fZQoaAZoCWgPQwjkSdI1k9VkQJSGlFKUaBVN6ANoFkdAivfClabF0nV9lChoBmgJaA9DCLDKhcq/RmVAlIaUUpRoFU3oA2gWR0CK/Z/3FkxzdX2UKGgGaAloD0MI170ViQmcZUCUhpRSlGgVTegDaBZHQIsFJPEbYK91fZQoaAZoCWgPQwi5/If0285hQJSGlFKUaBVN6ANoFkdAiwcmXXyy2XV9lChoBmgJaA9DCFqg3SFFbGFAlIaUUpRoFU3oA2gWR0CLCxrQgLZ0dX2UKGgGaAloD0MIQPflzHaFXECUhpRSlGgVTegDaBZHQIsZIpUgjhV1fZQoaAZoCWgPQwhupkI8krNgQJSGlFKUaBVN6ANoFkdAixuJVCHARHV9lChoBmgJaA9DCKLQsu6fbWZAlIaUUpRoFU3oA2gWR0CLHDAD7qIKdX2UKGgGaAloD0MIWi4bnfONXECUhpRSlGgVTegDaBZHQIsfsrPMSsd1fZQoaAZoCWgPQwhhNZawNnZlQJSGlFKUaBVN6ANoFkdAiyhpiAlOXXV9lChoBmgJaA9DCGvWGd8Xd19AlIaUUpRoFU3oA2gWR0CLLCrQPZqVdX2UKGgGaAloD0MIxK9Yw0V0TUCUhpRSlGgVS7xoFkdAiy9N/vv0AnV9lChoBmgJaA9DCBJPdjOjI2RAlIaUUpRoFU3oA2gWR0CLMvCIk7fYdX2UKGgGaAloD0MIWMudmeDJYUCUhpRSlGgVTegDaBZHQIs1E9pyp711fZQoaAZoCWgPQwizXaEPlhpeQJSGlFKUaBVN6ANoFkdAizuBQN0/4nV9lChoBmgJaA9DCJGBPLt8U0FAlIaUUpRoFUu2aBZHQItITpxFRYR1fZQoaAZoCWgPQwgew2M/i5NhQJSGlFKUaBVN6ANoFkdAi0wlCb+cY3V9lChoBmgJaA9DCF9cqtIWgVVAlIaUUpRoFU3oA2gWR0CLUMNedCmedWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f35c1d975e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f35c1d97670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f35c1d97700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f35c1d97790>", "_build": "<function ActorCriticPolicy._build at 0x7f35c1d97820>", "forward": "<function ActorCriticPolicy.forward at 0x7f35c1d978b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f35c1d97940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f35c1d979d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f35c1d97a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f35c1d97af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f35c1d97b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f35c1d97c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f35c1d9a4c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678645883439316168, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0ahr1OHak9lcfbuwW/Wr6n1kS8rgCqvAAAAAAAAAAAWieIvVzHILoGz581FZ1uMMKYNbtrTa60AACAPwAAgD/N2K08PZYaOpU/Fbyu23Q8s0Tjump6D7wAAAAAAAAAAGZkzbz2vHa6KCyzN4acrjJXh7W6fmjRtgAAgD8AAIA/TaI3veGswrp+dpG7GY+XPCqwkDpnR4O9AACAPwAAgD+aYA89XMQxPU4IJj2T2mC+2xfHPB5CQLsAAAAAAAAAADMkorwp6FW6TuEfOZXRBjQNiYq55iw8uAAAgD8AAIA/GnwAPRAgVT8Mn7+9VzmdvipIfT2TgkC8AAAAAAAAAADNUnw9dLOuP++0PD+XNrK+d0SjvK4Vvj0AAAAAAAAAANoH5L1SIMm5ErBlOHdrfDOyr2K66zyFtwAAgD8AAAAAzTrFvPbIYbqe6cm7atPlNzcWnTuNtyi3AACAPwAAgD9mYa08RB+eP+Y3Nj3cZrW+R3qyPdR8IT4AAAAAAAAAAE1QBr32SHW6kxmyNmQ9nzGFsCu75ZPStQAAgD8AAIA/vR54vsoeIj8Kh1M9hBxgvjGh4r1d8xA9AAAAAAAAAADNWAu9XNMmumL7xbapq6uxUm3NOc7y7TUAAIA/AACAPzPSsrwFov88JRdevAdvZ76+Grw8RFFEvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeQH20Wl/cUCUhpRSlIwBbJRNIQGMAXSUR0CYsNs4T9KmdX2UKGgGaAloD0MIKNap8r1Aa0CUhpRSlGgVTVYBaBZHQJixD1vl2eR1fZQoaAZoCWgPQwhEiZY8HrpsQJSGlFKUaBVNWAFoFkdAmLENH+ZPVXV9lChoBmgJaA9DCBe7fVaZrnBAlIaUUpRoFU1PAWgWR0CYscGqPwNLdX2UKGgGaAloD0MIineAJ+0yckCUhpRSlGgVTS8BaBZHQJiygXdj5Kx1fZQoaAZoCWgPQwg7pu7KLgpwQJSGlFKUaBVNQQFoFkdAmLMrpRoAXHV9lChoBmgJaA9DCCxjQzc7U3FAlIaUUpRoFU0kAWgWR0CYtAfdRBNVdX2UKGgGaAloD0MIP8kdNpE8cUCUhpRSlGgVTRIBaBZHQJi0pF9a2Wp1fZQoaAZoCWgPQwhVGFsIMmVxQJSGlFKUaBVNUgFoFkdAmLUbBO58SnV9lChoBmgJaA9DCFMI5BLHIm9AlIaUUpRoFU0nAWgWR0CYtUn3ta6jdX2UKGgGaAloD0MInyCx3X2IcECUhpRSlGgVTTIBaBZHQJi29TVDrqt1fZQoaAZoCWgPQwgQ5+EEptRtQJSGlFKUaBVNPQFoFkdAmLc9PxhDxHV9lChoBmgJaA9DCEcFTrYBNnBAlIaUUpRoFU1GAWgWR0CYt7XgtOEedX2UKGgGaAloD0MIZ/LNNrfGb0CUhpRSlGgVTUMBaBZHQJi3viHZbpx1fZQoaAZoCWgPQwjsGFdcnEhvQJSGlFKUaBVNPAFoFkdAmLlGSEDhcnV9lChoBmgJaA9DCCYceouHQmxAlIaUUpRoFU1CAWgWR0CYuVCqZML4dX2UKGgGaAloD0MIMV9egL2tckCUhpRSlGgVS+5oFkdAmLmXfEXLvHV9lChoBmgJaA9DCL/yID0FfHBAlIaUUpRoFU0vAWgWR0CYuajIaLn+dX2UKGgGaAloD0MIiCzSxLuebkCUhpRSlGgVTSoBaBZHQJi5toN/e+F1fZQoaAZoCWgPQwi/tRMloe1wQJSGlFKUaBVNNQFoFkdAmLn9zfaYeHV9lChoBmgJaA9DCPkQVI1eiHJAlIaUUpRoFU03AWgWR0CYurf6XSjQdX2UKGgGaAloD0MIIqZEEr3fb0CUhpRSlGgVTSsBaBZHQJi8l8v24/h1fZQoaAZoCWgPQwjw94vZkjxwQJSGlFKUaBVNSQFoFkdAmLynI2fkFXV9lChoBmgJaA9DCNCc9SnHvm5AlIaUUpRoFU0/AWgWR0CYvkDneSB9dX2UKGgGaAloD0MI8piByrglcECUhpRSlGgVTUABaBZHQJi+f0jC53F1fZQoaAZoCWgPQwjMejGUU89wQJSGlFKUaBVNdQFoFkdAmL+NAgPmP3V9lChoBmgJaA9DCMHhBRGpq3BAlIaUUpRoFU07AWgWR0CYwJwPiDNAdX2UKGgGaAloD0MIRMAhVOmScECUhpRSlGgVTU4BaBZHQJjCOE0zj3p1fZQoaAZoCWgPQwih8q/lFfNvQJSGlFKUaBVNLQFoFkdAmMN2DcuannV9lChoBmgJaA9DCClcj8J1vnBAlIaUUpRoFU2BAWgWR0CYw7j6N2kjdX2UKGgGaAloD0MIRtEDHwNMcECUhpRSlGgVTSwBaBZHQJjEIaXKKYR1fZQoaAZoCWgPQwjMXUvIBzFyQJSGlFKUaBVNPwFoFkdAmMRmMfigkHV9lChoBmgJaA9DCOdyg6FOVHBAlIaUUpRoFU1QAWgWR0CYxZ5sTFl1dX2UKGgGaAloD0MITMPwEXEQckCUhpRSlGgVTU0BaBZHQJjGCIRAbAF1fZQoaAZoCWgPQwhhGoaPSJ5xQJSGlFKUaBVNdwFoFkdAmMcjo6jnFHV9lChoBmgJaA9DCMEeEynNTG9AlIaUUpRoFU0eAWgWR0CY3mZXdTHbdX2UKGgGaAloD0MI1NUdi+2ZcECUhpRSlGgVTXkBaBZHQJjfF8NQTEl1fZQoaAZoCWgPQwi6ap4j8sNuQJSGlFKUaBVNXAFoFkdAmOBlsLv1DnV9lChoBmgJaA9DCHxFt17TDzZAlIaUUpRoFU0CAWgWR0CY47aQFLWadX2UKGgGaAloD0MIqOLGLWYZckCUhpRSlGgVTb0BaBZHQJjmv9rGipN1fZQoaAZoCWgPQwjYvKqzmjtwQJSGlFKUaBVNuQFoFkdAmObpI+W4VnV9lChoBmgJaA9DCPK20muz0nJAlIaUUpRoFU03AWgWR0CY6Gi/O+qSdX2UKGgGaAloD0MI1owMctfGcUCUhpRSlGgVTWoBaBZHQJjromNR3vB1fZQoaAZoCWgPQwjowd1Z+6ZxQJSGlFKUaBVNVgFoFkdAmOv8hcJMQHV9lChoBmgJaA9DCJ3ZrtAHTmxAlIaUUpRoFU3OAWgWR0CY7J2aDwpfdX2UKGgGaAloD0MIkbkyqLY9bkCUhpRSlGgVTSUBaBZHQJjtqrlvIfd1fZQoaAZoCWgPQwgCZr6D3+5wQJSGlFKUaBVNfQFoFkdAmO6fAoG6gHV9lChoBmgJaA9DCJd1/1jI4XBAlIaUUpRoFU1rAmgWR0CY8HK0lZ5idX2UKGgGaAloD0MIeGLWi2EEcUCUhpRSlGgVTUECaBZHQJjyVxQzk6t1fZQoaAZoCWgPQwibWrbWF5ReQJSGlFKUaBVN6ANoFkdAmPTjYywfQ3V9lChoBmgJaA9DCAzMCkW6M3BAlIaUUpRoFU2EAWgWR0CY9O3qzJIUdX2UKGgGaAloD0MI8yGoGr0rbkCUhpRSlGgVTXkCaBZHQJj1Lc32mHh1fZQoaAZoCWgPQwiFYFW9/BpOQJSGlFKUaBVL9mgWR0CY9aWiUPhAdX2UKGgGaAloD0MIZ/LNNrdBcECUhpRSlGgVTdUCaBZHQJj4eOOsDGN1fZQoaAZoCWgPQwihgy7h0DdwQJSGlFKUaBVNngFoFkdAmPn6r3j+73V9lChoBmgJaA9DCLkbRGtF8G9AlIaUUpRoFU3SAWgWR0CY+p4z7/GVdX2UKGgGaAloD0MIDTZ1HpXwcUCUhpRSlGgVTdMBaBZHQJj6yVt4zJp1fZQoaAZoCWgPQwiwdD48y7puQJSGlFKUaBVN7gJoFkdAmP9bGNrCWXV9lChoBmgJaA9DCBZPPdLgl3JAlIaUUpRoFU28A2gWR0CZAJwPy08edX2UKGgGaAloD0MIcVga+FHacECUhpRSlGgVTYICaBZHQJkQ0Gu9vjx1fZQoaAZoCWgPQwgXnSy13h80QJSGlFKUaBVL3mgWR0CZEw9tuUD/dX2UKGgGaAloD0MI7ginBS/gb0CUhpRSlGgVTdYBaBZHQJkUZP0qYqp1fZQoaAZoCWgPQwhftMcLac1tQJSGlFKUaBVNXwJoFkdAmSux6fJ3gXV9lChoBmgJaA9DCKmluRVCzm5AlIaUUpRoFU2fAWgWR0CZLEXpW3jNdX2UKGgGaAloD0MI/yPTodMfckCUhpRSlGgVTegBaBZHQJksQ9IPK+11fZQoaAZoCWgPQwh3Loz0okRvQJSGlFKUaBVNBgJoFkdAmSz/69CeE3V9lChoBmgJaA9DCKZfIt76nXJAlIaUUpRoFU2MAWgWR0CZLY7CSA6NdX2UKGgGaAloD0MIo1uv6cEUcUCUhpRSlGgVTZIBaBZHQJkt962OQyR1fZQoaAZoCWgPQwizDHGsi0JxQJSGlFKUaBVNawFoFkdAmTCfWxyGSXV9lChoBmgJaA9DCC20c5qFD25AlIaUUpRoFU1PAmgWR0CZNKir1dxAdX2UKGgGaAloD0MIm6xRD9EjckCUhpRSlGgVTc4CaBZHQJk0tJwsGxF1fZQoaAZoCWgPQwhqTl5kghZhQJSGlFKUaBVN6ANoFkdAmTemC7K7qnV9lChoBmgJaA9DCAgcCTTYc3BAlIaUUpRoFU1HAWgWR0CZOHnEl3QldX2UKGgGaAloD0MIcxB0tCrdZ0CUhpRSlGgVTegDaBZHQJk5l95Qgs91fZQoaAZoCWgPQwihFK3ci1xvQJSGlFKUaBVNRQFoFkdAmTm056t1ZHV9lChoBmgJaA9DCCNL5lhemGJAlIaUUpRoFU3oA2gWR0CZOr+n62v0dX2UKGgGaAloD0MIiulCrP75bkCUhpRSlGgVTTMBaBZHQJk65V4oqkN1fZQoaAZoCWgPQwhp4bIK24hwQJSGlFKUaBVNmQFoFkdAmT5o1+AmRnV9lChoBmgJaA9DCFVpi2s8H3JAlIaUUpRoFU2dAWgWR0CZPq1pTMq0dX2UKGgGaAloD0MIswbvq/JtckCUhpRSlGgVTTwBaBZHQJk/Z1B+nZV1fZQoaAZoCWgPQwjW5ZSAGJNnQJSGlFKUaBVN6ANoFkdAmT+Qd4mkWXV9lChoBmgJaA9DCFZmSutv53BAlIaUUpRoFU2jAWgWR0CZP+pA2Q4kdX2UKGgGaAloD0MIVIuIYnIJbkCUhpRSlGgVTfABaBZHQJlATJEH+qB1fZQoaAZoCWgPQwhyFva0Q0ptQJSGlFKUaBVNFgFoFkdAmUI01IiC8XV9lChoBmgJaA9DCJmghm8hnHBAlIaUUpRoFU2EAmgWR0CZRoqfOD8MdX2UKGgGaAloD0MIAdwsXiwdckCUhpRSlGgVTTEBaBZHQJlG1nqVyFR1fZQoaAZoCWgPQwgdyeU/5JVyQJSGlFKUaBVNfwFoFkdAmUesENe+mHV9lChoBmgJaA9DCCFblq9L0WxAlIaUUpRoFU1bAWgWR0CZS+hdt2s8dX2UKGgGaAloD0MICD4GK86xbkCUhpRSlGgVTYkBaBZHQJlNUpF1B+p1fZQoaAZoCWgPQwjlDpvITEhyQJSGlFKUaBVNgAFoFkdAmU4XW4EwFnV9lChoBmgJaA9DCKKW5lYIDG1AlIaUUpRoFU0mAWgWR0CZTsYkmhM8dX2UKGgGaAloD0MI8Uv9vKmFbkCUhpRSlGgVTZoBaBZHQJlQoAuIyj51fZQoaAZoCWgPQwi63GCog/9wQJSGlFKUaBVNPgFoFkdAmVC1PSDyv3V9lChoBmgJaA9DCKHbSxojf3FAlIaUUpRoFU1BAWgWR0CZULWZJCjUdX2UKGgGaAloD0MIQBTMmMJscECUhpRSlGgVTXwBaBZHQJlSNjVhCt11fZQoaAZoCWgPQwgbnIh+7fByQJSGlFKUaBVNXQFoFkdAmVJnavicXnV9lChoBmgJaA9DCEht4uR+e3JAlIaUUpRoFU3LAWgWR0CZVkoM8YAKdX2UKGgGaAloD0MIyk+qfbosb0CUhpRSlGgVTaEBaBZHQJlWvkhib2F1fZQoaAZoCWgPQwjLvFXXYRJxQJSGlFKUaBVNOwFoFkdAmVmsqvvBrXV9lChoBmgJaA9DCLDL8J8uu3JAlIaUUpRoFU2fAWgWR0CZWndcjZ+QdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b95f7397c31b9ea576811a8504742cedaa9998e36efe524c73e553ecc0dd6c50
|
3 |
+
size 147425
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -43,21 +43,21 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -70,13 +70,13 @@
|
|
70 |
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
@@ -87,7 +87,7 @@
|
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f35c1d975e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f35c1d97670>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f35c1d97700>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f35c1d97790>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f35c1d97820>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f35c1d978b0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f35c1d97940>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f35c1d979d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f35c1d97a60>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f35c1d97af0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f35c1d97b80>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f35c1d97c10>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f35c1d9a4c0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1678645883439316168,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0ahr1OHak9lcfbuwW/Wr6n1kS8rgCqvAAAAAAAAAAAWieIvVzHILoGz581FZ1uMMKYNbtrTa60AACAPwAAgD/N2K08PZYaOpU/Fbyu23Q8s0Tjump6D7wAAAAAAAAAAGZkzbz2vHa6KCyzN4acrjJXh7W6fmjRtgAAgD8AAIA/TaI3veGswrp+dpG7GY+XPCqwkDpnR4O9AACAPwAAgD+aYA89XMQxPU4IJj2T2mC+2xfHPB5CQLsAAAAAAAAAADMkorwp6FW6TuEfOZXRBjQNiYq55iw8uAAAgD8AAIA/GnwAPRAgVT8Mn7+9VzmdvipIfT2TgkC8AAAAAAAAAADNUnw9dLOuP++0PD+XNrK+d0SjvK4Vvj0AAAAAAAAAANoH5L1SIMm5ErBlOHdrfDOyr2K66zyFtwAAgD8AAAAAzTrFvPbIYbqe6cm7atPlNzcWnTuNtyi3AACAPwAAgD9mYa08RB+eP+Y3Nj3cZrW+R3qyPdR8IT4AAAAAAAAAAE1QBr32SHW6kxmyNmQ9nzGFsCu75ZPStQAAgD8AAIA/vR54vsoeIj8Kh1M9hBxgvjGh4r1d8xA9AAAAAAAAAADNWAu9XNMmumL7xbapq6uxUm3NOc7y7TUAAIA/AACAPzPSsrwFov88JRdevAdvZ76+Grw8RFFEvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
70 |
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeQH20Wl/cUCUhpRSlIwBbJRNIQGMAXSUR0CYsNs4T9KmdX2UKGgGaAloD0MIKNap8r1Aa0CUhpRSlGgVTVYBaBZHQJixD1vl2eR1fZQoaAZoCWgPQwhEiZY8HrpsQJSGlFKUaBVNWAFoFkdAmLENH+ZPVXV9lChoBmgJaA9DCBe7fVaZrnBAlIaUUpRoFU1PAWgWR0CYscGqPwNLdX2UKGgGaAloD0MIineAJ+0yckCUhpRSlGgVTS8BaBZHQJiygXdj5Kx1fZQoaAZoCWgPQwg7pu7KLgpwQJSGlFKUaBVNQQFoFkdAmLMrpRoAXHV9lChoBmgJaA9DCCxjQzc7U3FAlIaUUpRoFU0kAWgWR0CYtAfdRBNVdX2UKGgGaAloD0MIP8kdNpE8cUCUhpRSlGgVTRIBaBZHQJi0pF9a2Wp1fZQoaAZoCWgPQwhVGFsIMmVxQJSGlFKUaBVNUgFoFkdAmLUbBO58SnV9lChoBmgJaA9DCFMI5BLHIm9AlIaUUpRoFU0nAWgWR0CYtUn3ta6jdX2UKGgGaAloD0MInyCx3X2IcECUhpRSlGgVTTIBaBZHQJi29TVDrqt1fZQoaAZoCWgPQwgQ5+EEptRtQJSGlFKUaBVNPQFoFkdAmLc9PxhDxHV9lChoBmgJaA9DCEcFTrYBNnBAlIaUUpRoFU1GAWgWR0CYt7XgtOEedX2UKGgGaAloD0MIZ/LNNrfGb0CUhpRSlGgVTUMBaBZHQJi3viHZbpx1fZQoaAZoCWgPQwjsGFdcnEhvQJSGlFKUaBVNPAFoFkdAmLlGSEDhcnV9lChoBmgJaA9DCCYceouHQmxAlIaUUpRoFU1CAWgWR0CYuVCqZML4dX2UKGgGaAloD0MIMV9egL2tckCUhpRSlGgVS+5oFkdAmLmXfEXLvHV9lChoBmgJaA9DCL/yID0FfHBAlIaUUpRoFU0vAWgWR0CYuajIaLn+dX2UKGgGaAloD0MIiCzSxLuebkCUhpRSlGgVTSoBaBZHQJi5toN/e+F1fZQoaAZoCWgPQwi/tRMloe1wQJSGlFKUaBVNNQFoFkdAmLn9zfaYeHV9lChoBmgJaA9DCPkQVI1eiHJAlIaUUpRoFU03AWgWR0CYurf6XSjQdX2UKGgGaAloD0MIIqZEEr3fb0CUhpRSlGgVTSsBaBZHQJi8l8v24/h1fZQoaAZoCWgPQwjw94vZkjxwQJSGlFKUaBVNSQFoFkdAmLynI2fkFXV9lChoBmgJaA9DCNCc9SnHvm5AlIaUUpRoFU0/AWgWR0CYvkDneSB9dX2UKGgGaAloD0MI8piByrglcECUhpRSlGgVTUABaBZHQJi+f0jC53F1fZQoaAZoCWgPQwjMejGUU89wQJSGlFKUaBVNdQFoFkdAmL+NAgPmP3V9lChoBmgJaA9DCMHhBRGpq3BAlIaUUpRoFU07AWgWR0CYwJwPiDNAdX2UKGgGaAloD0MIRMAhVOmScECUhpRSlGgVTU4BaBZHQJjCOE0zj3p1fZQoaAZoCWgPQwih8q/lFfNvQJSGlFKUaBVNLQFoFkdAmMN2DcuannV9lChoBmgJaA9DCClcj8J1vnBAlIaUUpRoFU2BAWgWR0CYw7j6N2kjdX2UKGgGaAloD0MIRtEDHwNMcECUhpRSlGgVTSwBaBZHQJjEIaXKKYR1fZQoaAZoCWgPQwjMXUvIBzFyQJSGlFKUaBVNPwFoFkdAmMRmMfigkHV9lChoBmgJaA9DCOdyg6FOVHBAlIaUUpRoFU1QAWgWR0CYxZ5sTFl1dX2UKGgGaAloD0MITMPwEXEQckCUhpRSlGgVTU0BaBZHQJjGCIRAbAF1fZQoaAZoCWgPQwhhGoaPSJ5xQJSGlFKUaBVNdwFoFkdAmMcjo6jnFHV9lChoBmgJaA9DCMEeEynNTG9AlIaUUpRoFU0eAWgWR0CY3mZXdTHbdX2UKGgGaAloD0MI1NUdi+2ZcECUhpRSlGgVTXkBaBZHQJjfF8NQTEl1fZQoaAZoCWgPQwi6ap4j8sNuQJSGlFKUaBVNXAFoFkdAmOBlsLv1DnV9lChoBmgJaA9DCHxFt17TDzZAlIaUUpRoFU0CAWgWR0CY47aQFLWadX2UKGgGaAloD0MIqOLGLWYZckCUhpRSlGgVTb0BaBZHQJjmv9rGipN1fZQoaAZoCWgPQwjYvKqzmjtwQJSGlFKUaBVNuQFoFkdAmObpI+W4VnV9lChoBmgJaA9DCPK20muz0nJAlIaUUpRoFU03AWgWR0CY6Gi/O+qSdX2UKGgGaAloD0MI1owMctfGcUCUhpRSlGgVTWoBaBZHQJjromNR3vB1fZQoaAZoCWgPQwjowd1Z+6ZxQJSGlFKUaBVNVgFoFkdAmOv8hcJMQHV9lChoBmgJaA9DCJ3ZrtAHTmxAlIaUUpRoFU3OAWgWR0CY7J2aDwpfdX2UKGgGaAloD0MIkbkyqLY9bkCUhpRSlGgVTSUBaBZHQJjtqrlvIfd1fZQoaAZoCWgPQwgCZr6D3+5wQJSGlFKUaBVNfQFoFkdAmO6fAoG6gHV9lChoBmgJaA9DCJd1/1jI4XBAlIaUUpRoFU1rAmgWR0CY8HK0lZ5idX2UKGgGaAloD0MIeGLWi2EEcUCUhpRSlGgVTUECaBZHQJjyVxQzk6t1fZQoaAZoCWgPQwibWrbWF5ReQJSGlFKUaBVN6ANoFkdAmPTjYywfQ3V9lChoBmgJaA9DCAzMCkW6M3BAlIaUUpRoFU2EAWgWR0CY9O3qzJIUdX2UKGgGaAloD0MI8yGoGr0rbkCUhpRSlGgVTXkCaBZHQJj1Lc32mHh1fZQoaAZoCWgPQwiFYFW9/BpOQJSGlFKUaBVL9mgWR0CY9aWiUPhAdX2UKGgGaAloD0MIZ/LNNrdBcECUhpRSlGgVTdUCaBZHQJj4eOOsDGN1fZQoaAZoCWgPQwihgy7h0DdwQJSGlFKUaBVNngFoFkdAmPn6r3j+73V9lChoBmgJaA9DCLkbRGtF8G9AlIaUUpRoFU3SAWgWR0CY+p4z7/GVdX2UKGgGaAloD0MIDTZ1HpXwcUCUhpRSlGgVTdMBaBZHQJj6yVt4zJp1fZQoaAZoCWgPQwiwdD48y7puQJSGlFKUaBVN7gJoFkdAmP9bGNrCWXV9lChoBmgJaA9DCBZPPdLgl3JAlIaUUpRoFU28A2gWR0CZAJwPy08edX2UKGgGaAloD0MIcVga+FHacECUhpRSlGgVTYICaBZHQJkQ0Gu9vjx1fZQoaAZoCWgPQwgXnSy13h80QJSGlFKUaBVL3mgWR0CZEw9tuUD/dX2UKGgGaAloD0MI7ginBS/gb0CUhpRSlGgVTdYBaBZHQJkUZP0qYqp1fZQoaAZoCWgPQwhftMcLac1tQJSGlFKUaBVNXwJoFkdAmSux6fJ3gXV9lChoBmgJaA9DCKmluRVCzm5AlIaUUpRoFU2fAWgWR0CZLEXpW3jNdX2UKGgGaAloD0MI/yPTodMfckCUhpRSlGgVTegBaBZHQJksQ9IPK+11fZQoaAZoCWgPQwh3Loz0okRvQJSGlFKUaBVNBgJoFkdAmSz/69CeE3V9lChoBmgJaA9DCKZfIt76nXJAlIaUUpRoFU2MAWgWR0CZLY7CSA6NdX2UKGgGaAloD0MIo1uv6cEUcUCUhpRSlGgVTZIBaBZHQJkt962OQyR1fZQoaAZoCWgPQwizDHGsi0JxQJSGlFKUaBVNawFoFkdAmTCfWxyGSXV9lChoBmgJaA9DCC20c5qFD25AlIaUUpRoFU1PAmgWR0CZNKir1dxAdX2UKGgGaAloD0MIm6xRD9EjckCUhpRSlGgVTc4CaBZHQJk0tJwsGxF1fZQoaAZoCWgPQwhqTl5kghZhQJSGlFKUaBVN6ANoFkdAmTemC7K7qnV9lChoBmgJaA9DCAgcCTTYc3BAlIaUUpRoFU1HAWgWR0CZOHnEl3QldX2UKGgGaAloD0MIcxB0tCrdZ0CUhpRSlGgVTegDaBZHQJk5l95Qgs91fZQoaAZoCWgPQwihFK3ci1xvQJSGlFKUaBVNRQFoFkdAmTm056t1ZHV9lChoBmgJaA9DCCNL5lhemGJAlIaUUpRoFU3oA2gWR0CZOr+n62v0dX2UKGgGaAloD0MIiulCrP75bkCUhpRSlGgVTTMBaBZHQJk65V4oqkN1fZQoaAZoCWgPQwhp4bIK24hwQJSGlFKUaBVNmQFoFkdAmT5o1+AmRnV9lChoBmgJaA9DCFVpi2s8H3JAlIaUUpRoFU2dAWgWR0CZPq1pTMq0dX2UKGgGaAloD0MIswbvq/JtckCUhpRSlGgVTTwBaBZHQJk/Z1B+nZV1fZQoaAZoCWgPQwjW5ZSAGJNnQJSGlFKUaBVN6ANoFkdAmT+Qd4mkWXV9lChoBmgJaA9DCFZmSutv53BAlIaUUpRoFU2jAWgWR0CZP+pA2Q4kdX2UKGgGaAloD0MIVIuIYnIJbkCUhpRSlGgVTfABaBZHQJlATJEH+qB1fZQoaAZoCWgPQwhyFva0Q0ptQJSGlFKUaBVNFgFoFkdAmUI01IiC8XV9lChoBmgJaA9DCJmghm8hnHBAlIaUUpRoFU2EAmgWR0CZRoqfOD8MdX2UKGgGaAloD0MIAdwsXiwdckCUhpRSlGgVTTEBaBZHQJlG1nqVyFR1fZQoaAZoCWgPQwgdyeU/5JVyQJSGlFKUaBVNfwFoFkdAmUesENe+mHV9lChoBmgJaA9DCCFblq9L0WxAlIaUUpRoFU1bAWgWR0CZS+hdt2s8dX2UKGgGaAloD0MICD4GK86xbkCUhpRSlGgVTYkBaBZHQJlNUpF1B+p1fZQoaAZoCWgPQwjlDpvITEhyQJSGlFKUaBVNgAFoFkdAmU4XW4EwFnV9lChoBmgJaA9DCKKW5lYIDG1AlIaUUpRoFU0mAWgWR0CZTsYkmhM8dX2UKGgGaAloD0MI8Uv9vKmFbkCUhpRSlGgVTZoBaBZHQJlQoAuIyj51fZQoaAZoCWgPQwi63GCog/9wQJSGlFKUaBVNPgFoFkdAmVC1PSDyv3V9lChoBmgJaA9DCKHbSxojf3FAlIaUUpRoFU1BAWgWR0CZULWZJCjUdX2UKGgGaAloD0MIQBTMmMJscECUhpRSlGgVTXwBaBZHQJlSNjVhCt11fZQoaAZoCWgPQwgbnIh+7fByQJSGlFKUaBVNXQFoFkdAmVJnavicXnV9lChoBmgJaA9DCEht4uR+e3JAlIaUUpRoFU3LAWgWR0CZVkoM8YAKdX2UKGgGaAloD0MIyk+qfbosb0CUhpRSlGgVTaEBaBZHQJlWvkhib2F1fZQoaAZoCWgPQwjLvFXXYRJxQJSGlFKUaBVNOwFoFkdAmVmsqvvBrXV9lChoBmgJaA9DCLDL8J8uu3JAlIaUUpRoFU2fAWgWR0CZWndcjZ+QdWUu"
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 248,
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
|
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a43c18552b41cca5a02328789af3ed1892f01efa278bed867707c0ad67e8d0e
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0679ce5bf75aadad28e9d0aff0894a4a8097ae8ca0765c70d8014916fbd358a4
|
3 |
size 43393
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-5.10.147+-x86_64-with-glibc2.
|
2 |
-
- Python: 3.
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
-
- PyTorch: 1.13.
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 257.38653302313423, "std_reward": 26.053020996784234, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-12T18:54:09.823160"}
|