Commit
·
f71fff0
1
Parent(s):
d063bc8
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +16 -41
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/_stable_baselines3_version +1 -1
- ppo-LunarLander-v2/data +57 -53
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +7 -5
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- LunarLander-v2
|
4 |
-
- ppo
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
-
-
|
8 |
-
- deep-rl-course
|
9 |
model-index:
|
10 |
- name: PPO
|
11 |
results:
|
@@ -17,46 +16,22 @@ model-index:
|
|
17 |
type: LunarLander-v2
|
18 |
metrics:
|
19 |
- type: mean_reward
|
20 |
-
value:
|
21 |
name: mean_reward
|
22 |
verified: false
|
23 |
---
|
24 |
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
'wandb_entity': None
|
38 |
-
'capture_video': False
|
39 |
-
'env_id': 'LunarLander-v2'
|
40 |
-
'total_timesteps': 50000
|
41 |
-
'learning_rate': 0.00025
|
42 |
-
'num_envs': 4
|
43 |
-
'num_steps': 128
|
44 |
-
'anneal_lr': True
|
45 |
-
'gae': True
|
46 |
-
'gamma': 0.99
|
47 |
-
'gae_lambda': 0.95
|
48 |
-
'num_minibatches': 4
|
49 |
-
'update_epochs': 4
|
50 |
-
'norm_adv': True
|
51 |
-
'clip_coef': 0.2
|
52 |
-
'clip_vloss': True
|
53 |
-
'ent_coef': 0.01
|
54 |
-
'vf_coef': 0.5
|
55 |
-
'max_grad_norm': 0.5
|
56 |
-
'target_kl': None
|
57 |
-
'repo_id': 'juanfkurucz/ppo-LunarLander-v2'
|
58 |
-
'token': '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'
|
59 |
-
'batch_size': 512
|
60 |
-
'minibatch_size': 128}
|
61 |
-
```
|
62 |
-
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
tags:
|
4 |
- LunarLander-v2
|
|
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 257.93 +/- 20.71
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdbe925b1f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdbe925b280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdbe925b310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdbe925b3a0>", "_build": "<function ActorCriticPolicy._build at 0x7fdbe925b430>", "forward": "<function ActorCriticPolicy.forward at 0x7fdbe925b4c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdbe925b550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdbe925b5e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdbe925b670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdbe925b700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdbe925b790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdbe925b820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdbe9257810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2555904, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677808528641069918, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBMhL3QSJo/1V7jvsluRb8er3S9SDZpvgAAAAAAAAAAc927vY/CQbqjAK48EBzoPA4DODvUEMa9AACAPwAAgD8z7py8DxoIP57qJTyz5T+/vwnwO/bBhT0AAAAAAAAAAA3Pqj05tCM+mxurvpfs7r60qDm9Kg87vgAAAAAAAAAAZhABPUiDproaM7U6baSpNYj5Gzr2QdC5AACAPwAAgD96M10+hbu5P2OJFT+1e8e+SB+HPkNxqD4AAAAAAAAAAAAcTbxc+226slJ0u7OKLrOj/FQ7+4laMwAAgD8AAIA/zTA6vk60xz7myZc+cbAbv0XSwTvji0Q+AAAAAAAAAADz1NC9EYLrPXpGNz5CJMS+J7muPQMczjwAAAAAAAAAAGbrXj7hZFI+4pL+vinR7r4E/AQ7WJMuvgAAAAAAAAAAM1NnO+xl6D4Jwi28Tr85vx7S+zz+Vz+9AAAAAAAAAABNFzi9XCssupn0xbTxGDCwkO5mOttqwTMAAIA/AACAP9r/uz1S5Lo+CkravdRpIr+HGuI9dF4OvgAAAAAAAAAAzaxUu/aAVbo9nLG9Ut0pvjHrvjxSAz0/AAAAAAAAgD/Aq4G94OSRP6kiSr7cDzW/jXYfvmd2ML4AAAAAAAAAABovJj60SxE/sp4kvUMIGb/zX7E+quuuvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02236159999999998, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVn2utiJhcUCUhpRSlIwBbJRLuIwBdJRHQKz8QyM1jy51fZQoaAZoCWgPQwgBomDGlCpzQJSGlFKUaBVL1WgWR0Cs/FeEIw/QdX2UKGgGaAloD0MIJ1DEIoYwcUCUhpRSlGgVS5FoFkdArPygvDgqE3V9lChoBmgJaA9DCMrfvaPG1HJAlIaUUpRoFUu/aBZHQKz8tP8hs691fZQoaAZoCWgPQwjqsMItXw1xQJSGlFKUaBVLlWgWR0Cs/Mtz8xbjdX2UKGgGaAloD0MIm8jMBW5vckCUhpRSlGgVS6loFkdArPzSyfL9uXV9lChoBmgJaA9DCBP0F3rEAXNAlIaUUpRoFUu5aBZHQKz83GT9sJp1fZQoaAZoCWgPQwiRfvs6MMtwQJSGlFKUaBVLnGgWR0Cs/StWluWKdX2UKGgGaAloD0MIu9QI/cwqc0CUhpRSlGgVS9doFkdArP02gOBlMHV9lChoBmgJaA9DCIApAwc0cnFAlIaUUpRoFUuYaBZHQKz9VUrkKeF1fZQoaAZoCWgPQwgGS3UBL5JxQJSGlFKUaBVLpWgWR0Cs/WeSr5qNdX2UKGgGaAloD0MIKnPzjagScUCUhpRSlGgVS5RoFkdArP1rHZK3/nV9lChoBmgJaA9DCARZT63+vHBAlIaUUpRoFUuraBZHQKz9kgElme11fZQoaAZoCWgPQwhrgT0mEnhyQJSGlFKUaBVLtGgWR0Cs/ck7GNrCdX2UKGgGaAloD0MIIxKFlrUPcECUhpRSlGgVS6loFkdArP3SX6ZYxXV9lChoBmgJaA9DCJkMx/NZtnFAlIaUUpRoFUu8aBZHQKz96O+7Dl51fZQoaAZoCWgPQwgrTyDsFHRwQJSGlFKUaBVL02gWR0Cs/hrzwtrcdX2UKGgGaAloD0MIcHmsGdnqcECUhpRSlGgVS6loFkdArP4iIxgy/XV9lChoBmgJaA9DCDaSBOEKp3FAlIaUUpRoFUuvaBZHQKz+StbLU1B1fZQoaAZoCWgPQwh319mQ/8RwQJSGlFKUaBVLq2gWR0Cs/mHvUjLTdX2UKGgGaAloD0MIO6kvS/vZcUCUhpRSlGgVS7NoFkdArP5+9tdiUnV9lChoBmgJaA9DCCRHOgMjD3NAlIaUUpRoFUvJaBZHQKz+ogam4y51fZQoaAZoCWgPQwjKU1bT9T1xQJSGlFKUaBVLqGgWR0Cs/rju8brDdX2UKGgGaAloD0MIuKzCZoBqcUCUhpRSlGgVS61oFkdArP7Q8fV7QnV9lChoBmgJaA9DCC4B+KcUXHFAlIaUUpRoFUuZaBZHQKz+1bnHNot1fZQoaAZoCWgPQwgx0/avrCRwQJSGlFKUaBVLqWgWR0Cs/ua86FM7dX2UKGgGaAloD0MI/TGtTeMBckCUhpRSlGgVS65oFkdArP8LnJT2nXV9lChoBmgJaA9DCEOrkzMU53BAlIaUUpRoFUukaBZHQKz/HP8AJcB1fZQoaAZoCWgPQwjH8xlQL4JyQJSGlFKUaBVLjWgWR0Cs/0D5TIeYdX2UKGgGaAloD0MIsaNxqN+PckCUhpRSlGgVS6ZoFkdArP9lzS1E3XV9lChoBmgJaA9DCMjT8gPXiHBAlIaUUpRoFUusaBZHQKz/avi97F91fZQoaAZoCWgPQwjk9PV8DbJwQJSGlFKUaBVLmGgWR0Cs/5TpX6qLdX2UKGgGaAloD0MI4zREFT6EcECUhpRSlGgVS5RoFkdArP/IJb+tKnV9lChoBmgJaA9DCLRVSWQfjHJAlIaUUpRoFUu7aBZHQK0AFsSCe3B1fZQoaAZoCWgPQwho5sk1xSVwQJSGlFKUaBVLq2gWR0CtACT2exwAdX2UKGgGaAloD0MIN4qsNZQzcUCUhpRSlGgVS9NoFkdArQAmmrKeTXV9lChoBmgJaA9DCAHeAgnKdHBAlIaUUpRoFUuoaBZHQK0AXEBKcut1fZQoaAZoCWgPQwjkvWplAqZxQJSGlFKUaBVLs2gWR0CtAGABDG96dX2UKGgGaAloD0MILh9JSY8Dc0CUhpRSlGgVS6VoFkdArQBs/4ZdfXV9lChoBmgJaA9DCASsVbsmw3FAlIaUUpRoFUunaBZHQK0AiEug6EJ1fZQoaAZoCWgPQwgJibSNP4ZvQJSGlFKUaBVLm2gWR0CtAKCOvMbFdX2UKGgGaAloD0MI4gSm0zpdckCUhpRSlGgVS8VoFkdArQC+Lzf78HV9lChoBmgJaA9DCKdAZmdRo25AlIaUUpRoFUuiaBZHQK0A1UfgaWJ1fZQoaAZoCWgPQwg164zvy2ZzQJSGlFKUaBVLv2gWR0CtAOaKcd5qdX2UKGgGaAloD0MIsTIa+TyTckCUhpRSlGgVS7JoFkdArQEmqvNeMXV9lChoBmgJaA9DCCBj7lqC+XJAlIaUUpRoFUuoaBZHQK0BOR15jYt1fZQoaAZoCWgPQwisGRnkLqNyQJSGlFKUaBVL0mgWR0CtAXOmR/3GdX2UKGgGaAloD0MIBAKdSRuqb0CUhpRSlGgVS5ZoFkdArQGbjin5z3V9lChoBmgJaA9DCKEQAYcQ5XNAlIaUUpRoFUu1aBZHQK0B3g6U7jl1fZQoaAZoCWgPQwgGK061lvFyQJSGlFKUaBVL1GgWR0CtAeGUwBYFdX2UKGgGaAloD0MIgSVXsThJckCUhpRSlGgVS6toFkdArQIHai9Iw3V9lChoBmgJaA9DCL9jeOxnRnFAlIaUUpRoFUugaBZHQK0CGbsniNt1fZQoaAZoCWgPQwjkEdxIWaNyQJSGlFKUaBVLymgWR0CtAh+Q+2VndX2UKGgGaAloD0MIIuAQqpSYcUCUhpRSlGgVS5RoFkdArQIyTINmUXV9lChoBmgJaA9DCG0gXWya+XBAlIaUUpRoFUu7aBZHQK0CMd+5OJt1fZQoaAZoCWgPQwgYmBWKNNtxQJSGlFKUaBVLpWgWR0CtAj8KG+K1dX2UKGgGaAloD0MIBFd5AiE/ckCUhpRSlGgVS8loFkdArQJhsVLzw3V9lChoBmgJaA9DCKGDLuHQfXJAlIaUUpRoFUuqaBZHQK0CgI3zcyp1fZQoaAZoCWgPQwitaHOcW6RwQJSGlFKUaBVLpWgWR0CtAtkCV8kVdX2UKGgGaAloD0MIV9EfmrmAc0CUhpRSlGgVS8toFkdArQLkotthu3V9lChoBmgJaA9DCPn3GRdO/nJAlIaUUpRoFUu3aBZHQK0C8+oLofV1fZQoaAZoCWgPQwi7KeW1Ui5yQJSGlFKUaBVLrmgWR0CtAylV94NadX2UKGgGaAloD0MIBHP0+P0uckCUhpRSlGgVS5NoFkdArQNLSRbKR3V9lChoBmgJaA9DCH+jHTe8M3JAlIaUUpRoFUu3aBZHQK0DbOP/7zl1fZQoaAZoCWgPQwhPCB10yTdzQJSGlFKUaBVLkGgWR0CtA3aF23a0dX2UKGgGaAloD0MI8nfvqHGScECUhpRSlGgVS6xoFkdArQOVNHpbEHV9lChoBmgJaA9DCIYDIVkAZnJAlIaUUpRoFUu2aBZHQK0D5p9qk/N1fZQoaAZoCWgPQwg+JlKazS5xQJSGlFKUaBVLsGgWR0CtA/ENvwVkdX2UKGgGaAloD0MIaHbdWxEcckCUhpRSlGgVS6ZoFkdArQQRr+Hae3V9lChoBmgJaA9DCB11dFzND3NAlIaUUpRoFUvHaBZHQK0EJ16E8JV1fZQoaAZoCWgPQwhgI0kQboJzQJSGlFKUaBVLxGgWR0CtBDk4m1IAdX2UKGgGaAloD0MI81oJ3aW3cECUhpRSlGgVS6xoFkdArQRajafzz3V9lChoBmgJaA9DCGr11VXBunFAlIaUUpRoFUvdaBZHQK0ErW5H3Dh1fZQoaAZoCWgPQwiRD3o2q9lwQJSGlFKUaBVLqWgWR0CtBNEqDsdDdX2UKGgGaAloD0MIuk24VybzcUCUhpRSlGgVS7FoFkdArQT8RWcSXnV9lChoBmgJaA9DCIzYJ4DiJXFAlIaUUpRoFUu8aBZHQK0FNzp5eJJ1fZQoaAZoCWgPQwjytWeWRKtwQJSGlFKUaBVLqGgWR0CtBTsVk+X7dX2UKGgGaAloD0MIUn+9wsL4cUCUhpRSlGgVS5JoFkdArQVFDSgGr3V9lChoBmgJaA9DCFPKayV05m9AlIaUUpRoFUuYaBZHQK0FZL/S6Ud1fZQoaAZoCWgPQwgXnwJgPFRxQJSGlFKUaBVLuWgWR0CtBalsYVIqdX2UKGgGaAloD0MI5ldzgCCqckCUhpRSlGgVS69oFkdArQXkeuFHrnV9lChoBmgJaA9DCGQfZFkwtG9AlIaUUpRoFUuPaBZHQK0F9kYoAn51fZQoaAZoCWgPQwilFkomZ/lxQJSGlFKUaBVLt2gWR0CtBoEk8ifQdX2UKGgGaAloD0MIy03U0lwRZ0CUhpRSlGgVTegDaBZHQK0GqClrM1V1fZQoaAZoCWgPQwidE3toHyhyQJSGlFKUaBVLvWgWR0CtBt7+cYqHdX2UKGgGaAloD0MIqu/8ogQNcUCUhpRSlGgVS8JoFkdArQbeHFglW3V9lChoBmgJaA9DCD1IT5HDpnJAlIaUUpRoFUu5aBZHQK0G46gdwNt1fZQoaAZoCWgPQwhuiVxwRpJxQJSGlFKUaBVLuWgWR0CtBv269TP0dX2UKGgGaAloD0MITKd1G5SOcUCUhpRSlGgVS6RoFkdArQcleyAxz3V9lChoBmgJaA9DCDGzz2PUZHJAlIaUUpRoFUvFaBZHQK0HcHh0heR1fZQoaAZoCWgPQwj27SQifAV0QJSGlFKUaBVLsGgWR0CtB3aYNRWMdX2UKGgGaAloD0MI4UVfQRqqc0CUhpRSlGgVS6xoFkdArQekir1dxHV9lChoBmgJaA9DCAvVzcXf829AlIaUUpRoFUupaBZHQK0HpEehf0F1fZQoaAZoCWgPQwjulXmrbpBzQJSGlFKUaBVLv2gWR0CtB93TmW+odX2UKGgGaAloD0MIfJi9bHvncUCUhpRSlGgVS7ZoFkdArQfo/PgNw3V9lChoBmgJaA9DCJQyqaEN63FAlIaUUpRoFUueaBZHQK0IDr30wrV1fZQoaAZoCWgPQwjQCaGDrrdxQJSGlFKUaBVLu2gWR0CtCDemFajfdX2UKGgGaAloD0MIYJSgv5AncUCUhpRSlGgVS5ZoFkdArQiATCcf/3V9lChoBmgJaA9DCAyQaAKFAnNAlIaUUpRoFUvAaBZHQK0In3UQTVV1fZQoaAZoCWgPQwgIlE25gh5xQJSGlFKUaBVLkmgWR0CtCNa3I+4cdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 390, "n_steps": 4096, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f097543da20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f097543dab0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f097543db40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f097543dbd0>", "_build": "<function ActorCriticPolicy._build at 0x7f097543dc60>", "forward": "<function ActorCriticPolicy.forward at 0x7f097543dcf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f097543dd80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f097543de10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f097543dea0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f097543df30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f097543dfc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f097543e050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0975437100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685564672200299295, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqZRTl7zYU9or2xPWVXP74c37Q8ciMTvAAAAAAAAAAAADqdvLPwSj/0IhS9DfK/vnkQwLyMnCy8AAAAAAAAAABmIFY99qAWPQN93Ty6Rk6+SZ5aO5hAcTwAAAAAAAAAAKaqlz1IS4S6spoqOPmIiDMdpEA6IJxDtwAAgD8AAIA/OuchvnExjj8jCTG+5mjtvgJ9Rb6r4ja9AAAAAAAAAABmdgc9cbJdu7pUTLxKX6Y8bxqhPFzZjb0AAIA/AACAP5pnZzxIMaG69YtxMnLParDatPw61o8wswAAgD8AAIA/ZpRyPJ87kLulC9M7dc+PPLm9wrzmgHU9AACAPwAAgD9mN4k9nZIzP5NnRb2i/L++sLA6PeORE70AAAAAAAAAAPOV5T0asJA+x3sNvpe/i75BsIW9A0blvQAAAAAAAAAAbVE+vsPLMz/+J/s7nMrMvrOE+r1e9qQ9AAAAAAAAAACNIZ09aY8TPU42qD0Vx2m+5TaZPXBidrwAAAAAAAAAAJrJaDzs07K7VOC4O9vCjjxdGxy91TRyPQAAgD8AAIA/GpUEvrlMkj/ou5K+Y6Ldvq+2Ib7mcpK9AAAAAAAAAABaFJA9g4kzPQoK4jx+5Ui+dw+bPAZYJb0AAAAAAAAAADN0YD32rGK6jsx3s8E47i6xAkC6kvzFMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG2rIu5BkZuMAWyUTSoBjAF0lEdAkMeJ/XoTwnV9lChoBkdAcBltE5Qxe2gHTR4BaAhHQJDIXxiG34N1fZQoaAZHQEigRSxZ+x5oB0vzaAhHQJDJLcJtzjp1fZQoaAZHQHF7eIRAbAFoB00HAWgIR0CQyjhWYF7ldX2UKGgGR0Bx1Xqjafz0aAdNMwFoCEdAkMsV2aDwpnV9lChoBkdAcY4yVv/BFmgHTQIBaAhHQJDLfxNIsiB1fZQoaAZHQG8NLL6k691oB00bAWgIR0CQzE1lXiiqdX2UKGgGR0BvMco+fRNRaAdNLAFoCEdAkMxdwJgLJHV9lChoBkdAb6uhvitJWmgHTSIBaAhHQJDNnWVeKKp1fZQoaAZHQG3zT/hl18toB00aAWgIR0CQzhTc6/7BdX2UKGgGR0Bx68PBi1AraAdNZAFoCEdAkM5uC5EtunV9lChoBkdAcAi0HyEtd2gHTQcBaAhHQJDPBMGorFx1fZQoaAZHQHAYILCvX9RoB00IAWgIR0CQz5cQAdXDdX2UKGgGR0BuWmtyPuG9aAdNAQFoCEdAkM+pDeCTU3V9lChoBkdAcfQNliBoVWgHTVcBaAhHQJDP7bdrO7h1fZQoaAZHQHJEKgdwNspoB00aAWgIR0CQ0Du6VdHEdX2UKGgGR0Buy5NqQA+7aAdNBgFoCEdAkNDMKgIyCXV9lChoBkdAcTjiDdxhlWgHS/RoCEdAkNEgkka/AXV9lChoBkdAceGWT5ftyGgHS/ZoCEdAkNNL7XQMQXV9lChoBkdAbE2274BV/GgHTQQBaAhHQJDTXYraufV1fZQoaAZHQHGiIdlum79oB00sAWgIR0CQ08bRF7UodX2UKGgGR0Bv6rbBXS0CaAdNDwFoCEdAkNTk+LWI43V9lChoBkdAb107e2uxKWgHTQEBaAhHQJDWDr+o99t1fZQoaAZHQHMcwblzU7VoB007AWgIR0CQ1lNAC4jKdX2UKGgGR0BxFrhjvuw5aAdNEgFoCEdAkNb9PxhDxHV9lChoBkdAcT55U96kZmgHTUABaAhHQJDYFV7x/d91fZQoaAZHQHC349TxXn1oB00NAWgIR0CQ2HKFqSHNdX2UKGgGR0By87IIWxhVaAdNCwFoCEdAkNpSl3yI6HV9lChoBkdAcZlvDgqEvmgHTQwBaAhHQJDa7tZ3cHp1fZQoaAZHQHDtSJj2BatoB008AWgIR0CQ2zmNzbN9dX2UKGgGR0BuZjq0MPSVaAdNSQFoCEdAkNxduLrHEXV9lChoBkdAb0th86V+qmgHTXkBaAhHQJDdqmpEQXh1fZQoaAZHQHBNSIxgy/NoB00hAWgIR0CQ34+NtIkJdX2UKGgGR0BxBaYLLIPtaAdNLwFoCEdAkOBzB/I8yXV9lChoBkdAbkd6tT1kD2gHTR8BaAhHQJDiOg6EJ0J1fZQoaAZHQHBwYrrgOz9oB00OAWgIR0CQ4zWbgCOndX2UKGgGR0BxBvGcWj46aAdNVwFoCEdAkONwG0NSZXV9lChoBkdATPhTIeYD1WgHS8hoCEdAkOVTy8SPEXV9lChoBkdAcM08oQWepWgHTRoBaAhHQJDm+zdDYyx1fZQoaAZHQGzClPi1iONoB00oAWgIR0CQ51HxSYPYdX2UKGgGR0Bv2Z/ustCiaAdNUQFoCEdAkOdNaEBbOnV9lChoBkdAVuOAd4mkWWgHTegDaAhHQJDosaYNRWN1fZQoaAZHQHEl9FSbYsdoB00iAWgIR0CQ6UUGVzIWdX2UKGgGR0BxS9Frl/6PaAdNQwFoCEdAkOr0rsjVx3V9lChoBkdAcXEXumaYu2gHTRMBaAhHQJDrF7BwdbR1fZQoaAZHQHCa1I7Njb1oB00xAWgIR0CQ+vsvZh8ZdX2UKGgGR0BvBgmLLpzLaAdL62gIR0CQ+1G7SRbKdX2UKGgGR0BwR8zP8hs7aAdNJgFoCEdAkPyYaP0ZnHV9lChoBkdAbE1xJd0JW2gHS/toCEdAkP14LsrupnV9lChoBkdAcJDZTho/RmgHS/9oCEdAkP14eHSF5HV9lChoBkdAck+o3aSLZWgHTRIBaAhHQJD9hnwob4t1fZQoaAZHQHNcjJ+2E01oB00VAWgIR0CRAI0p3HJcdX2UKGgGR0BrD4dlum78aAdNVAJoCEdAkQCRlcyFf3V9lChoBkdAcTiD7ZWaMWgHTTsBaAhHQJEAmQcPvrp1fZQoaAZHQFOqbaRISUVoB0v2aAhHQJEA2/9Hc1x1fZQoaAZHQHFwRLf1pTNoB00OAWgIR0CRASUwztTldX2UKGgGR0BytT6SDAaeaAdNRQFoCEdAkQHfeLvTgHV9lChoBkdAbe5Pl+3H72gHTU8BaAhHQJEB/7wazeJ1fZQoaAZHQHHsbKFIuoRoB00AAWgIR0CRAqj4YaYNdX2UKGgGR0ByJ95JK8L8aAdNDQFoCEdAkQMLiMo+fXV9lChoBkdAcVoM2WIGhWgHTRgBaAhHQJEDr8HfMwF1fZQoaAZHQGVEkX+ERJ5oB03QA2gIR0CRBATs6aLGdX2UKGgGR0Bw+2BczImxaAdNPwFoCEdAkQROtCAtnXV9lChoBkdAbeUV9nbqQmgHTRUBaAhHQJEEwaOxSpB1fZQoaAZHQG1VZ6D5CWxoB00YAWgIR0CRBZjv/io9dX2UKGgGR0BxGHZi/fwaaAdNGwFoCEdAkQWk6YE4enV9lChoBkdAcbU37UG3WmgHTVMBaAhHQJEHKG0u14R1fZQoaAZHQG+cx3V09yNoB0v9aAhHQJEIKbb1yvN1fZQoaAZHQHBlPrjYI0JoB00XAWgIR0CRCFgte2NOdX2UKGgGR0Bw5zoouwotaAdNFwFoCEdAkQhh0uDjBHV9lChoBkdAbhbk/8l5W2gHS/FoCEdAkQicPWhAW3V9lChoBkdAcFnWIGhVVGgHS/loCEdAkQoZNO/L1XV9lChoBkdAcKa95hScb2gHTU0BaAhHQJEKOBiCrcV1fZQoaAZHQHNHyu+yquNoB01bAWgIR0CRCli9qUNbdX2UKGgGR0BuYjX8O09haAdNKgFoCEdAkQpnYL9deXV9lChoBkdARvJ6D5CWvGgHS91oCEdAkQqU8V58jXV9lChoBkdAcPPeLNwBHWgHTSwBaAhHQJELDwlSjxl1fZQoaAZHQHIFSyhSLqFoB0v7aAhHQJELDL0SRKZ1fZQoaAZHQHFCAumJm/ZoB01AAWgIR0CRDGTS9du6dX2UKGgGR0BvSQNAkcCHaAdL+WgIR0CRDGVMEidKdX2UKGgGR0BzbjWDpTuOaAdNOAFoCEdAkQ0/ViF0xXV9lChoBkdAcT+A5aNdaGgHS+9oCEdAkQ2uez2OAHV9lChoBkdAcrJmgrYoRmgHTScBaAhHQJENrj+717J1fZQoaAZHQHCMujynUDxoB00GAWgIR0CRD2viLl3hdX2UKGgGR0Bxv1FOO802aAdNIQFoCEdAkRCLa/RE4XV9lChoBkdAct50pVjqfWgHTToBaAhHQJEQ4oLG7z11fZQoaAZHQG5TWTX8O09oB004AWgIR0CREQEcbR4RdX2UKGgGR0BxPfF6zE75aAdNBQFoCEdAkRGN1QqI8HV9lChoBkdAcs23/Pw/gWgHS/BoCEdAkRIKOtGNJnV9lChoBkdAbM+0Ltu1nmgHTRkBaAhHQJESRKh+OOt1fZQoaAZHQGy3qF7D2rZoB00QAWgIR0CREo1OCXhPdX2UKGgGR0BzLtaNdZ7paAdNGgFoCEdAkRKjmr8zh3V9lChoBkdAciQVafSQYGgHTR4BaAhHQJES2TcIqsl1fZQoaAZHQG7B3wsoUi9oB00fAWgIR0CRE7kfLcKxdX2UKGgGR0BxNsp2ECeVaAdL82gIR0CRFC8CPp6hdX2UKGgGR0Bwg1VGTcIraAdNSwFoCEdAkReq6z3RHHV9lChoBkdAcBvk4m1IAmgHTTMBaAhHQJEYAPGyX2N1fZQoaAZHQHNcpcTrVvxoB00sAWgIR0CRGGYUFjd6dX2UKGgGR0BzCODzyz5XaAdNMwFoCEdAkRiu23KB/nV9lChoBkdAcMFnYg7o0WgHTQwBaAhHQJEZrfhuO0d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc12518eff2573778284273aec5cbb505edb6c71fe62cc39245efe13c8319bcb
|
3 |
+
size 146735
|
ppo-LunarLander-v2/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,60 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"
|
25 |
-
|
26 |
-
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
-
"dtype": "float32",
|
28 |
-
"_shape": [
|
29 |
-
8
|
30 |
-
],
|
31 |
-
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
-
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
-
"bounded_below": "[False False False False False False False False]",
|
34 |
-
"bounded_above": "[False False False False False False False False]",
|
35 |
-
"_np_random": null
|
36 |
-
},
|
37 |
-
"action_space": {
|
38 |
-
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
-
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
-
"n": 4,
|
41 |
-
"_shape": [],
|
42 |
-
"dtype": "int64",
|
43 |
-
"_np_random": null
|
44 |
-
},
|
45 |
-
"n_envs": 16,
|
46 |
-
"num_timesteps": 2555904,
|
47 |
-
"_total_timesteps": 2500000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
-
"lr_schedule": {
|
55 |
-
":type:": "<class 'function'>",
|
56 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
-
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -67,29 +41,59 @@
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
|
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
-
"
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
94 |
-
"target_kl": null
|
|
|
|
|
|
|
|
|
95 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f097543da20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f097543dab0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f097543db40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f097543dbd0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f097543dc60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f097543dcf0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f097543dd80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f097543de10>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f097543dea0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f097543df30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f097543dfc0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f097543e050>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f0975437100>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1685564672200299295,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
|
|
|
|
|
|
|
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqZRTl7zYU9or2xPWVXP74c37Q8ciMTvAAAAAAAAAAAADqdvLPwSj/0IhS9DfK/vnkQwLyMnCy8AAAAAAAAAABmIFY99qAWPQN93Ty6Rk6+SZ5aO5hAcTwAAAAAAAAAAKaqlz1IS4S6spoqOPmIiDMdpEA6IJxDtwAAgD8AAIA/OuchvnExjj8jCTG+5mjtvgJ9Rb6r4ja9AAAAAAAAAABmdgc9cbJdu7pUTLxKX6Y8bxqhPFzZjb0AAIA/AACAP5pnZzxIMaG69YtxMnLParDatPw61o8wswAAgD8AAIA/ZpRyPJ87kLulC9M7dc+PPLm9wrzmgHU9AACAPwAAgD9mN4k9nZIzP5NnRb2i/L++sLA6PeORE70AAAAAAAAAAPOV5T0asJA+x3sNvpe/i75BsIW9A0blvQAAAAAAAAAAbVE+vsPLMz/+J/s7nMrMvrOE+r1e9qQ9AAAAAAAAAACNIZ09aY8TPU42qD0Vx2m+5TaZPXBidrwAAAAAAAAAAJrJaDzs07K7VOC4O9vCjjxdGxy91TRyPQAAgD8AAIA/GpUEvrlMkj/ou5K+Y6Ldvq+2Ib7mcpK9AAAAAAAAAABaFJA9g4kzPQoK4jx+5Ui+dw+bPAZYJb0AAAAAAAAAADN0YD32rGK6jsx3s8E47i6xAkC6kvzFMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG2rIu5BkZuMAWyUTSoBjAF0lEdAkMeJ/XoTwnV9lChoBkdAcBltE5Qxe2gHTR4BaAhHQJDIXxiG34N1fZQoaAZHQEigRSxZ+x5oB0vzaAhHQJDJLcJtzjp1fZQoaAZHQHF7eIRAbAFoB00HAWgIR0CQyjhWYF7ldX2UKGgGR0Bx1Xqjafz0aAdNMwFoCEdAkMsV2aDwpnV9lChoBkdAcY4yVv/BFmgHTQIBaAhHQJDLfxNIsiB1fZQoaAZHQG8NLL6k691oB00bAWgIR0CQzE1lXiiqdX2UKGgGR0BvMco+fRNRaAdNLAFoCEdAkMxdwJgLJHV9lChoBkdAb6uhvitJWmgHTSIBaAhHQJDNnWVeKKp1fZQoaAZHQG3zT/hl18toB00aAWgIR0CQzhTc6/7BdX2UKGgGR0Bx68PBi1AraAdNZAFoCEdAkM5uC5EtunV9lChoBkdAcAi0HyEtd2gHTQcBaAhHQJDPBMGorFx1fZQoaAZHQHAYILCvX9RoB00IAWgIR0CQz5cQAdXDdX2UKGgGR0BuWmtyPuG9aAdNAQFoCEdAkM+pDeCTU3V9lChoBkdAcfQNliBoVWgHTVcBaAhHQJDP7bdrO7h1fZQoaAZHQHJEKgdwNspoB00aAWgIR0CQ0Du6VdHEdX2UKGgGR0Buy5NqQA+7aAdNBgFoCEdAkNDMKgIyCXV9lChoBkdAcTjiDdxhlWgHS/RoCEdAkNEgkka/AXV9lChoBkdAceGWT5ftyGgHS/ZoCEdAkNNL7XQMQXV9lChoBkdAbE2274BV/GgHTQQBaAhHQJDTXYraufV1fZQoaAZHQHGiIdlum79oB00sAWgIR0CQ08bRF7UodX2UKGgGR0Bv6rbBXS0CaAdNDwFoCEdAkNTk+LWI43V9lChoBkdAb107e2uxKWgHTQEBaAhHQJDWDr+o99t1fZQoaAZHQHMcwblzU7VoB007AWgIR0CQ1lNAC4jKdX2UKGgGR0BxFrhjvuw5aAdNEgFoCEdAkNb9PxhDxHV9lChoBkdAcT55U96kZmgHTUABaAhHQJDYFV7x/d91fZQoaAZHQHC349TxXn1oB00NAWgIR0CQ2HKFqSHNdX2UKGgGR0By87IIWxhVaAdNCwFoCEdAkNpSl3yI6HV9lChoBkdAcZlvDgqEvmgHTQwBaAhHQJDa7tZ3cHp1fZQoaAZHQHDtSJj2BatoB008AWgIR0CQ2zmNzbN9dX2UKGgGR0BuZjq0MPSVaAdNSQFoCEdAkNxduLrHEXV9lChoBkdAb0th86V+qmgHTXkBaAhHQJDdqmpEQXh1fZQoaAZHQHBNSIxgy/NoB00hAWgIR0CQ34+NtIkJdX2UKGgGR0BxBaYLLIPtaAdNLwFoCEdAkOBzB/I8yXV9lChoBkdAbkd6tT1kD2gHTR8BaAhHQJDiOg6EJ0J1fZQoaAZHQHBwYrrgOz9oB00OAWgIR0CQ4zWbgCOndX2UKGgGR0BxBvGcWj46aAdNVwFoCEdAkONwG0NSZXV9lChoBkdATPhTIeYD1WgHS8hoCEdAkOVTy8SPEXV9lChoBkdAcM08oQWepWgHTRoBaAhHQJDm+zdDYyx1fZQoaAZHQGzClPi1iONoB00oAWgIR0CQ51HxSYPYdX2UKGgGR0Bv2Z/ustCiaAdNUQFoCEdAkOdNaEBbOnV9lChoBkdAVuOAd4mkWWgHTegDaAhHQJDosaYNRWN1fZQoaAZHQHEl9FSbYsdoB00iAWgIR0CQ6UUGVzIWdX2UKGgGR0BxS9Frl/6PaAdNQwFoCEdAkOr0rsjVx3V9lChoBkdAcXEXumaYu2gHTRMBaAhHQJDrF7BwdbR1fZQoaAZHQHCa1I7Njb1oB00xAWgIR0CQ+vsvZh8ZdX2UKGgGR0BvBgmLLpzLaAdL62gIR0CQ+1G7SRbKdX2UKGgGR0BwR8zP8hs7aAdNJgFoCEdAkPyYaP0ZnHV9lChoBkdAbE1xJd0JW2gHS/toCEdAkP14LsrupnV9lChoBkdAcJDZTho/RmgHS/9oCEdAkP14eHSF5HV9lChoBkdAck+o3aSLZWgHTRIBaAhHQJD9hnwob4t1fZQoaAZHQHNcjJ+2E01oB00VAWgIR0CRAI0p3HJcdX2UKGgGR0BrD4dlum78aAdNVAJoCEdAkQCRlcyFf3V9lChoBkdAcTiD7ZWaMWgHTTsBaAhHQJEAmQcPvrp1fZQoaAZHQFOqbaRISUVoB0v2aAhHQJEA2/9Hc1x1fZQoaAZHQHFwRLf1pTNoB00OAWgIR0CRASUwztTldX2UKGgGR0BytT6SDAaeaAdNRQFoCEdAkQHfeLvTgHV9lChoBkdAbe5Pl+3H72gHTU8BaAhHQJEB/7wazeJ1fZQoaAZHQHHsbKFIuoRoB00AAWgIR0CRAqj4YaYNdX2UKGgGR0ByJ95JK8L8aAdNDQFoCEdAkQMLiMo+fXV9lChoBkdAcVoM2WIGhWgHTRgBaAhHQJEDr8HfMwF1fZQoaAZHQGVEkX+ERJ5oB03QA2gIR0CRBATs6aLGdX2UKGgGR0Bw+2BczImxaAdNPwFoCEdAkQROtCAtnXV9lChoBkdAbeUV9nbqQmgHTRUBaAhHQJEEwaOxSpB1fZQoaAZHQG1VZ6D5CWxoB00YAWgIR0CRBZjv/io9dX2UKGgGR0BxGHZi/fwaaAdNGwFoCEdAkQWk6YE4enV9lChoBkdAcbU37UG3WmgHTVMBaAhHQJEHKG0u14R1fZQoaAZHQG+cx3V09yNoB0v9aAhHQJEIKbb1yvN1fZQoaAZHQHBlPrjYI0JoB00XAWgIR0CRCFgte2NOdX2UKGgGR0Bw5zoouwotaAdNFwFoCEdAkQhh0uDjBHV9lChoBkdAbhbk/8l5W2gHS/FoCEdAkQicPWhAW3V9lChoBkdAcFnWIGhVVGgHS/loCEdAkQoZNO/L1XV9lChoBkdAcKa95hScb2gHTU0BaAhHQJEKOBiCrcV1fZQoaAZHQHNHyu+yquNoB01bAWgIR0CRCli9qUNbdX2UKGgGR0BuYjX8O09haAdNKgFoCEdAkQpnYL9deXV9lChoBkdARvJ6D5CWvGgHS91oCEdAkQqU8V58jXV9lChoBkdAcPPeLNwBHWgHTSwBaAhHQJELDwlSjxl1fZQoaAZHQHIFSyhSLqFoB0v7aAhHQJELDL0SRKZ1fZQoaAZHQHFCAumJm/ZoB01AAWgIR0CRDGTS9du6dX2UKGgGR0BvSQNAkcCHaAdL+WgIR0CRDGVMEidKdX2UKGgGR0BzbjWDpTuOaAdNOAFoCEdAkQ0/ViF0xXV9lChoBkdAcT+A5aNdaGgHS+9oCEdAkQ2uez2OAHV9lChoBkdAcrJmgrYoRmgHTScBaAhHQJENrj+717J1fZQoaAZHQHCMujynUDxoB00GAWgIR0CRD2viLl3hdX2UKGgGR0Bxv1FOO802aAdNIQFoCEdAkRCLa/RE4XV9lChoBkdAct50pVjqfWgHTToBaAhHQJEQ4oLG7z11fZQoaAZHQG5TWTX8O09oB004AWgIR0CREQEcbR4RdX2UKGgGR0BxPfF6zE75aAdNBQFoCEdAkRGN1QqI8HV9lChoBkdAcs23/Pw/gWgHS/BoCEdAkRIKOtGNJnV9lChoBkdAbM+0Ltu1nmgHTRkBaAhHQJESRKh+OOt1fZQoaAZHQGy3qF7D2rZoB00QAWgIR0CREo1OCXhPdX2UKGgGR0BzLtaNdZ7paAdNGgFoCEdAkRKjmr8zh3V9lChoBkdAciQVafSQYGgHTR4BaAhHQJES2TcIqsl1fZQoaAZHQG7B3wsoUi9oB00fAWgIR0CRE7kfLcKxdX2UKGgGR0BxNsp2ECeVaAdL82gIR0CRFC8CPp6hdX2UKGgGR0Bwg1VGTcIraAdNSwFoCEdAkReq6z3RHHV9lChoBkdAcBvk4m1IAmgHTTMBaAhHQJEYAPGyX2N1fZQoaAZHQHNcpcTrVvxoB00sAWgIR0CRGGYUFjd6dX2UKGgGR0BzCODzyz5XaAdNMwFoCEdAkRiu23KB/nV9lChoBkdAcMFnYg7o0WgHTQwBaAhHQJEZrfhuO0d1ZS4="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4714048d35b0886c7c4e0f9b8910bc8942b3ea0d9cc488ec05cad1bf53212389
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c73461ac2f2f0eac81fbf49e2ca2fae740cd27f91e936fa51e8c874d4d799e5
|
3 |
+
size 43329
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
-
- OS: Linux-5.
|
2 |
-
- Python: 3.
|
3 |
-
- Stable-Baselines3:
|
4 |
-
- PyTorch:
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.22.4
|
7 |
-
-
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"mean_reward": 257.92590798932457, "std_reward": 20.70840446122845, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-31T20:42:16.881687"}
|