2nd commit
Browse files- .gitattributes +1 -0
- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/data +33 -25
- a2c-AntBulletEnv-v0/policy.optimizer.pth +2 -2
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1859.76 +/- 118.70
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd18622d4fc02516d915033c8a3fd698e7bd83927cf9506a511d0f211cdddeeb
|
3 |
+
size 129231
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,41 +4,49 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
|
|
24 |
"log_std_init": -2,
|
25 |
-
"ortho_init": false
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
},
|
27 |
"num_timesteps": 2000000,
|
28 |
"_total_timesteps": 2000000,
|
29 |
"_num_timesteps_at_start": 0,
|
30 |
"seed": null,
|
31 |
"action_noise": null,
|
32 |
-
"start_time":
|
33 |
-
"learning_rate":
|
34 |
-
"tensorboard_log":
|
35 |
"lr_schedule": {
|
36 |
":type:": "<class 'function'>",
|
37 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc
|
38 |
},
|
39 |
"_last_obs": {
|
40 |
":type:": "<class 'numpy.ndarray'>",
|
41 |
-
":serialized:": "
|
42 |
},
|
43 |
"_last_episode_starts": {
|
44 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -46,7 +54,7 @@
|
|
46 |
},
|
47 |
"_last_original_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
-
":serialized:": "
|
50 |
},
|
51 |
"_episode_num": 0,
|
52 |
"use_sde": true,
|
@@ -55,18 +63,18 @@
|
|
55 |
"_stats_window_size": 100,
|
56 |
"ep_info_buffer": {
|
57 |
":type:": "<class 'collections.deque'>",
|
58 |
-
":serialized:": "
|
59 |
},
|
60 |
"ep_success_buffer": {
|
61 |
":type:": "<class 'collections.deque'>",
|
62 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
63 |
},
|
64 |
-
"_n_updates":
|
65 |
-
"n_steps":
|
66 |
"gamma": 0.99,
|
67 |
"gae_lambda": 0.9,
|
68 |
-
"ent_coef": 0.
|
69 |
-
"vf_coef": 0.
|
70 |
"max_grad_norm": 0.5,
|
71 |
"normalize_advantage": false,
|
72 |
"observation_space": {
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5069f41dc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5069f41e50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5069f41ee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5069f41f70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5069f44040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5069f440d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5069f44160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5069f441f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5069f44280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5069f44310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5069f443a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5069f44430>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5069f435c0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
},
|
35 |
"num_timesteps": 2000000,
|
36 |
"_total_timesteps": 2000000,
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
+
"start_time": 1682531118267572815,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
44 |
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMCqhD60uDK/Cc1nvnCXNj8LCqW/q7+KP46qD76UMSe/xCB2v86vgD9pYKE/0Z2vPhpfSj1oxQE/dlILP2Hxqzzlu5Y/zE8Ov5Tg6L5mX7u+Vv5mvXWRQr8l8Jg/tUkDwM5nNz9UWqU+/A8dP/dhaL97KIy6QmAjv/aRBL7rtyc/kvENPleKjD3riva+dngAPPRwtr9aDhTAwvgcv4FbIj+Ld7698WbgvvyUDj+LtxO9LFVNP+0R7T9QLGm+sXKdvv9L5T0bHwbAOC69P51a5j4KqrK/VFqlPmGh0L9AAo0/Bl4QPvsZIb/x/Oy9I4ATP8zIfr0yp4i9WhBqv+jfzr0XjZu/0CK+PgFJ3j4HWbc/M2GVP+LMp7xIK8c+B1JlQMxCzD+7/di+QRnHPnz2mL+GBCM/LPPPv/HprT+ufTQ/zmc3P1RapT5hodC/92Fov3gI7z4oqQm/TwOQPOwGhD8/blC/wQqXP7UPBL8g3/q+mKIuvwcu0j8hEGg/q4gBP3790j6h2hJAntwKP0mUkzyuOMQ+QJVQvWoyRb/5mn8+OPIkv1un0D5MvCU/TY2TPs5nNz9UWqU+/A8dP/dhaL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC/bbG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAR64vPQAAAAChaea/AAAAAPG4B74AAAAASmHoPwAAAABGfyI9AAAAAO4G3D8AAAAAMgzAPQAAAAC/q+6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq3dltgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgO49h7wAAAAArNMAwAAAAABZ34q8AAAAAB247T8AAAAAAQq6vQAAAADPtvA/AAAAABLgWD0AAAAAUu37vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG5Cc7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA9/Su9AAAAADfj/r8AAAAAICjzvQAAAADyPts/AAAAAFo2zzsAAAAAr7bpPwAAAACK+7Y9AAAAAJ/Z2L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSNs41AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAMsCfPQAAAAAx3ti/AAAAAAtb4j0AAAAAnw7zPwAAAAAYBgE+AAAAABgn4z8AAAAAz2e7PQAAAAAAvPe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
},
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": true,
|
|
|
63 |
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJbj17SiM5yMAWyUTegDjAF0lEdArRaH6GgzxnV9lChoBkdAmKq7nHNorWgHTegDaAhHQK0Z3Tx5LRN1fZQoaAZHQJdVvxEv0yxoB03oA2gIR0CtHyfPomojdX2UKGgGR0CU1mDnvDxcaAdN6ANoCEdArR9qR2bG3nV9lChoBkdAlyTxq46OpGgHTegDaAhHQK0ko6reZXx1fZQoaAZHQJjdCnMt9QZoB03oA2gIR0CtJ4gPd2xIdX2UKGgGR0CWy+X7+DODaAdN6ANoCEdArSz1GgBcRnV9lChoBkdAmVABT0g8sGgHTegDaAhHQK0tOBZIQOF1fZQoaAZHQJhqHerMkhRoB03oA2gIR0CtNJUMgEEDdX2UKGgGR0CZb/pX6qKhaAdN6ANoCEdArTgg9vCMxXV9lChoBkdAmm4q6WgOBmgHTegDaAhHQK09p1dPci51fZQoaAZHQJaAt6u4gA9oB03oA2gIR0CtPe2yTpxFdX2UKGgGR0CZFoi8nNPhaAdN6ANoCEdArUMZUFSsKnV9lChoBkdAl1Y225QP7WgHTegDaAhHQK1FW6q814x1fZQoaAZHQJHjIPBi1AtoB03oA2gIR0CtStNVrAP/dX2UKGgGR0CYsljNIK+jaAdN6ANoCEdArUshIH1OCXV9lChoBkdAmi5UypJf6WgHTegDaAhHQK1SJNKyv9t1fZQoaAZHQJk4up97WupoB03oA2gIR0CtVamG/N7jdX2UKGgGR0CU9WhVU+9raAdN6ANoCEdArVusVLzwt3V9lChoBkdAmC+FaGHpKWgHTegDaAhHQK1b8p84Pwx1fZQoaAZHQJYHXS6UaAFoB03oA2gIR0CtYRsUqQRxdX2UKGgGR0CWKCUFjd56aAdN6ANoCEdArWOXA6+36XV9lChoBkdAmjPvKISDiGgHTegDaAhHQK1pkKKpDNR1fZQoaAZHQJeu1SXMQmNoB03oA2gIR0CtaddSMtK7dX2UKGgGR0CXf+yI55quaAdN6ANoCEdArXCm7aqS5nV9lChoBkdAl8UasdT5wmgHTegDaAhHQK10REWIoE11fZQoaAZHQJlZCWu5jH5oB03oA2gIR0CtenptSAH3dX2UKGgGR0CXqDUliSaFaAdN6ANoCEdArXq/ocJdB3V9lChoBkdAl9kQCfYjB2gHTegDaAhHQK1/5gXMyJt1fZQoaAZHQJj7bKHO8kFoB03oA2gIR0CtgjnNgSezdX2UKGgGR0CbjFstkFwDaAdN6ANoCEdArYfAZOzpo3V9lChoBkdAlqzvgeii7GgHTegDaAhHQK2IBYXfqHJ1fZQoaAZHQJvfdTjvNNdoB03oA2gIR0Ctjmq9XcQAdX2UKGgGR0Ca3AXPJJXhaAdN6ANoCEdArZHc3S8aoHV9lChoBkdAnI07mdRR/GgHTegDaAhHQK2YdNet0V91fZQoaAZHQJk1jT3IuGtoB03oA2gIR0CtmLlme18cdX2UKGgGR0CbEX/vv0AcaAdN6ANoCEdArZ32tQsPKHV9lChoBkdAmpof0VafSWgHTegDaAhHQK2gSeLehwl1fZQoaAZHQJp2RbmlqJxoB03oA2gIR0CtpnmlqJuVdX2UKGgGR0CaxIhRZU1iaAdN6ANoCEdAraa/Zf2K23V9lChoBkdAmf1xDTjNp2gHTegDaAhHQK2tG/0ulGh1fZQoaAZHQJregsunMt9oB03oA2gIR0CtsI+d07r+dX2UKGgGR0CY8yWeYlY2aAdN6ANoCEdArbcglnh86XV9lChoBkdAmzKJAD7qIWgHTegDaAhHQK23Y4bS7Xh1fZQoaAZHQJ5qZdu5z5poB03oA2gIR0CtvIzdk8RudX2UKGgGR0CdavgYP5HmaAdN6ANoCEdArb7UXzlLe3V9lChoBkdAmywp6lchT2gHTegDaAhHQK3ETYL9deJ1fZQoaAZHQJ7GCEHt4RpoB03oA2gIR0CtxJDz7MxHdX2UKGgGR0CcyUNKRMewaAdN6ANoCEdArcpleWv8qHV9lChoBkdAnP82HDaXbGgHTegDaAhHQK3Nqv0RODd1fZQoaAZHQJrHsqur6tVoB03oA2gIR0Ct1OCGnGbTdX2UKGgGR0Cb3w93KSxJaAdN6ANoCEdArdUkpNKywHV9lChoBkdAlQZJW3jMmmgHTegDaAhHQK3aXMXaakR1fZQoaAZHQJeqjLfUF0RoB03oA2gIR0Ct3K3aSLZSdX2UKGgGR0CVO2xH5JsgaAdN6ANoCEdAreK7QNTcZnV9lChoBkdAltQtYSxqwmgHTegDaAhHQK3jDt65Xlt1fZQoaAZHQJRqMDklu3toB03oA2gIR0Ct6Pd7WuoxdX2UKGgGR0CT4kS75Ec9aAdN6ANoCEdArexOtlqagHV9lChoBkdAldlPTXrdFmgHTegDaAhHQK3zvuUliSd1fZQoaAZHQJOHldAxBVxoB03oA2gIR0Ct9ARTsIE9dX2UKGgGR0CVXDEG7jDLaAdN6ANoCEdArfk3KbKA8XV9lChoBkdAllGqqbSZ0GgHTegDaAhHQK37hlKbrkd1fZQoaAZHQJXZKKFZgXxoB03oA2gIR0CuAQKOtGNJdX2UKGgGR0CUwHnWrfcfaAdN6ANoCEdArgFHVAiV0XV9lChoBkdAlLP2d/axo2gHTegDaAhHQK4GzCoCMgl1fZQoaAZHQIyIOAy2x6hoB03oA2gIR0CuCg4W1twadX2UKGgGR0CTU6aR6nivaAdN6ANoCEdArhHD/GVAzHV9lChoBkdAjvMHX2/SIGgHTegDaAhHQK4SDGNJe3R1fZQoaAZHQJH7TWy1NQFoB03oA2gIR0CuF0W1MM7VdX2UKGgGR0CTucThYNiIaAdN6ANoCEdArhmLOcDr7nV9lChoBkdAl3FwU+LWJGgHTegDaAhHQK4e4CsfaHt1fZQoaAZHQJdgkjD8+A5oB03oA2gIR0CuHz94mkWRdX2UKGgGR0CWgv4yoGY8aAdN6ANoCEdAriUGEZiuuHV9lChoBkdAlh1KKYRdyGgHTegDaAhHQK4oOtbs4T91fZQoaAZHQJPjR8twrDtoB03oA2gIR0CuMA7vXsgMdX2UKGgGR0CSojAT7EYPaAdN6ANoCEdArjBRrFfiP3V9lChoBkdAkI9uRs/IKmgHTegDaAhHQK41bf5ULlV1fZQoaAZHQJKCsBxPwd9oB03oA2gIR0CuN7kaVD8cdX2UKGgGR0CThmBLwnYyaAdN6ANoCEdArj0kSkCV8nV9lChoBkdAl2ru4oZydWgHTegDaAhHQK49aeaKDTV1fZQoaAZHQJVJw/keZG9oB03oA2gIR0CuQo6F/QSjdX2UKGgGR0CTyLy9EkSmaAdN6ANoCEdArkVP8n/kvXV9lChoBkdAl4wM9Oh0yWgHTegDaAhHQK5NNEHdGiJ1fZQoaAZHQJfWubtqpLpoB03oA2gIR0CuTaHUMG5ddX2UKGgGR0CTRGRqXWvsaAdN6ANoCEdArlLlZid8RnV9lChoBkdAmnMxcJMQE2gHTegDaAhHQK5VHaB7NSt1fZQoaAZHQJmhrYPGyX5oB03oA2gIR0CuWnaPbO/tdX2UKGgGR0CXYcKLbYbsaAdN6ANoCEdArlq7KA8SwnV9lChoBkdAlZsXqVyFPGgHTegDaAhHQK5gpi8WbgF1fZQoaAZHQI3VYigTRIBoB03oA2gIR0CuY0DBMzuXdX2UKGgGR0CRj5pWFN+LaAdN6ANoCEdArmsyGi5/b3V9lChoBkdAlMtMTviLl2gHTegDaAhHQK5rnGRV6u51fZQoaAZHQJjZhsabWmRoB03oA2gIR0CucSp2MbWFdX2UKGgGR0CZUFWac7QtaAdN6ANoCEdArnNjRplBhXV9lChoBkdAnToTFqBVdWgHTegDaAhHQK541VEuxr11fZQoaAZHQJuGaN70Fr5oB03oA2gIR0CueR9IPK+0dX2UKGgGR0CZaVsNDtw8aAdN6ANoCEdArn5GVZ9uxnV9lChoBkdAmIk5k078vWgHTegDaAhHQK6AifQKKHh1fZQoaAZHQJoZBK02LpBoB03oA2gIR0CuiEtQbdaddX2UKGgGR0Cb9Ku/k/8maAdN6ANoCEdAroi4jGDL83VlLg=="
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
70 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
"gamma": 0.99,
|
75 |
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
"max_grad_norm": 0.5,
|
79 |
"normalize_advantage": false,
|
80 |
"observation_space": {
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a332f5c6bf21c8a4939437caa840b5ee4a29d333cd5116ea2179080ccafe62b9
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56894
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd71a3bee1c16d6c38fb3b4f1d6d284afee19816ae59b3764d6097675c50e59a
|
3 |
size 56894
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2472c68b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2472c68c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2472c68ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2472c68d30>", "_build": "<function ActorCriticPolicy._build at 0x7f2472c68dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2472c68e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2472c68ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2472c68f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2472c00040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2472c000d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2472c00160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2472c001f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2472c03100>"}, "verbose": 1, "policy_kwargs": {"log_std_init": -2, "ortho_init": false}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682482881614226268, "learning_rate": 3e-05, "tensorboard_log": "logs/fit/20230426-042040", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+/3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAC/Uhr83v+Q/jJv5v1GU/7xB5ls9K+ukPWPrr70mh7U7NhmIv7pHmLsjIki/Fr8KvfcqQb9sMlS7eNwnP1uCjzzv8uK+zGh8ul9mKz88HZ88L3Zqv2ugBTo2LSG/cG3YvEVfHT9vkyE/BlMdP/aSOT/zXZo/qRPOv/OLDL9ELzI9z/ALwC4KDr9+KAK+D+E5PaqFpj8m5oG69eCDPyzSDr7oLI2/hGRdP2Mm1b1BB2DAPje2v+kTHLz7CLS/uXF9v/pkYb8OT5g/tm6QPxfP4b9FONC/cc3KvwZTHT+Pk7C/6/XOPr7hMj90a/w+p4A2PEhtX7w5FmI9ki3SvtG1Xb+BEo+/4Pu5O/Mvlz/k6Pa87g6gP08QQLtFcSg/c1rmPOd+iz/KgAK8n/AqP59hWrsspWq/Ben0O9YMvD+neNK+RV8dP2+TIT96SNC/j5Owvz2umb+ySig/LGYDP/WLZL2YsLc9T8rrPYByjb2sv6Y+dzCbP5EDyLoyXoS/GgKSvBrYOz3oDeE/ChooPz9KDbxde6a/sW9ePLgZED/5kWE7eJa3P3owzzqYV1W/daEqvUVfHT9xzcq/BlMdP/aSOT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACmZFy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALx9pPQAAAABMUvG/AAAAAOwGb70AAAAAJnjoPwAAAADTwGm9AAAAAOQ28T8AAAAAptn3vAAAAABtZOm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxpy4tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPlaDj4AAAAAEXTZvwAAAABjICc8AAAAALsH9j8AAAAArBsMvgAAAAA8tOk/AAAAAFMI3LwAAAAAufL2vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADBqAjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAqyZK8AAAAANQk378AAAAAg6GSvAAAAADNivM/AAAAAG1meLsAAAAADP/aPwAAAACpzNS8AAAAADeS4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwOpc1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfho2vQAAAAB/2/y/AAAAAOVnpT0AAAAAIuDpPwAAAAAtRKu9AAAAAMM8+D8AAAAAFYj3uwAAAAAH1dm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGw7HYpUgjiMAWyUTegDjAF0lEdAsOODTRYzSHV9lChoBkdAbxXU70WdmWgHTcEDaAhHQLDkOp2ll9V1fZQoaAZHQGPuguyu6mRoB03oA2gIR0Cw5Sxt+CsfdX2UKGgGR0Bizuhdt2s8aAdN6ANoCEdAsOmtbQkX13V9lChoBkdAbJWbLEDQq2gHTegDaAhHQLDre9deIEd1fZQoaAZHQFiNmMwUQCloB03oA2gIR0Cw6/5/9YOldX2UKGgGR0Bjm7DVH4GmaAdN6ANoCEdAsOzq2y9mH3V9lChoBkdAYuCdEsrd32gHTegDaAhHQLDwgJiAlOZ1fZQoaAZHQG6HxtP557hoB03oA2gIR0Cw8m+rELpidX2UKGgGR0Bwjo9lmOENaAdN6ANoCEdAsPMgtjCpFXV9lChoBkdAaK3KdxyXD2gHTegDaAhHQLD0CdxyXD51fZQoaAZHwF7GxT850bNoB01HAmgIR0Cw9UxxT850dX2UKGgGR0BxFdnjABT5aAdN6ANoCEdAsPpnitJWenV9lChoBke/8nA/LTx5LWgHSxRoCEdAsPqHpB5X2nV9lChoBkdAX+PBZZB9kWgHTegDaAhHQLD65ZSvTw51fZQoaAZHQHAoYqG1x85oB03oA2gIR0Cw+40Z75VPdX2UKGgGRz/OT5ftx+8XaAdLFGgIR0Cw+65MHryEdX2UKGgGR0BaABXXAdn1aAdN6ANoCEdAsPxkEq2BrnV9lChoBkdAEV7O3UhFE2gHTV4BaAhHQLD9J5Xlr/N1fZQoaAZHv8rZ6D5CWu5oB0tCaAhHQLD9lUGmk311fZQoaAZHQG8qavA44qBoB03oA2gIR0CxAQM7yQPqdX2UKGgGR0BjdPwNLDhtaAdN6ANoCEdAsQKYBOpKjHV9lChoBkdAcacmPo3aSWgHTegDaAhHQLEDnm2b5M11fZQoaAZHQDSomv4dp7FoB03oA2gIR0CxBYW3WnTBdX2UKGgGR0BZczfBN21VaAdNZAFoCEdAsQb8hTwUg3V9lChoBkdAbx7Kji4rjGgHTegDaAhHQLEJRNN8E3d1fZQoaAZHQGk8UD+zdDZoB01JA2gIR0CxCWgzch1UdX2UKGgGR0BkBkl5WzWxaAdN6ANoCEdAsQyTwqiGnHV9lChoBkdAUDXKYAsCk2gHTegDaAhHQLENt6jWTX91fZQoaAZHP9BV1fVqeshoB01dA2gIR0CxDw9SVGCqdX2UKGgGR8ASD1bqyGBXaAdN6ANoCEdAsRATq+rU9nV9lChoBkdAScjI91U2k2gHTSQCaAhHQLEQFYLb5/N1fZQoaAZHQGWNeYlY2bZoB03oA2gIR0CxFcyf16E8dX2UKGgGR0Bf/M7lq8DkaAdN6ANoCEdAsRcw9IPK+3V9lChoBkdAZCgpQ1rIo2gHTegDaAhHQLEYN3JxNqR1fZQoaAZHQHUgGAPNFBpoB03oA2gIR0CxGDlWfbsXdX2UKGgGR0BuMc2cawUyaAdN6ANoCEdAsRwu5tm+TXV9lChoBkdAUid9Brvb5GgHTdMCaAhHQLEcy31zySV1fZQoaAZHQGOFyXD3ueBoB03oA2gIR0CxHZHPZ7HAdX2UKGgGRz/cwcHWz4UOaAdLG2gIR0CxHb1a4c3mdX2UKGgGR0Ag+1og3cYZaAdNWQFoCEdAsR5mLCN0eXV9lChoBkdAV62N96Tnq2gHTegDaAhHQLEemWT5ftx1fZQoaAZHQGypCOvMbFVoB02bAmgIR0CxJBfr0J4TdX2UKGgGR0BD2JcgQpWnaAdN6ANoCEdAsST7Lq2SdXV9lChoBkdAaY7TAFgUlGgHTegDaAhHQLEl89SuQp51fZQoaAZHP+WNWEK3NLVoB0sUaAhHQLEmFGBWge11fZQoaAZHQGSrg6Mir1doB03oA2gIR0CxJswAZKnOdX2UKGgGR0BFp3ocJdB0aAdN6ANoCEdAsSr1Up/gBXV9lChoBkdAaR0A1ejVQWgHTegDaAhHQLEruKZDzAh1fZQoaAZHv+f1FH8TBZZoB0sUaAhHQLEr5nBLwnZ1fZQoaAZHQFC2HoHLRrtoB03oA2gIR0CxLNicslLOdX2UKGgGR0BvzAyoGY8daAdN6ANoCEdAsS2ZbxEv03V9lChoBkdAaSZ5O8Cgb2gHTegDaAhHQLEy+6xPfsN1fZQoaAZHwEWulSCOFQFoB03oA2gIR0CxNAuhoM8YdX2UKGgGR0BjpEVUMoc8aAdN6ANoCEdAsTUjSro4dnV9lChoBkdAZjBf51vETGgHTegDaAhHQLE14oZAIIF1fZQoaAZHQGakL0J4SpRoB03oA2gIR0CxOg9f1HvudX2UKGgGR0BYuiV0Lc9GaAdN6ANoCEdAsTrFYU34sXV9lChoBkdAWgsKIBRyfmgHTegDaAhHQLE7uzRx95R1fZQoaAZHQHGjiteUpuxoB03oA2gIR0CxPHibtqpMdX2UKGgGR0BB60SIxgy/aAdLkGgIR0CxPXKPCEYgdX2UKGgGR0Bo7j0xubZwaAdN6ANoCEdAsUG9MZgogHV9lChoBkdAZ6A5o4+8oWgHTegDaAhHQLFCzSlFc6h1fZQoaAZHQGQYTEzfrKNoB03oA2gIR0CxRA5VbRnfdX2UKGgGR0AwJgLZzxPPaAdN6ANoCEdAsUW6E384xXV9lChoBkdAY46WJJoTPGgHTegDaAhHQLFI6Sidrft1fZQoaAZHQGTqMFdLQHBoB03oA2gIR0CxSZCeI2wWdX2UKGgGR0Avd5ckdFOPaAdL6WgIR0CxSl4lQdjodX2UKGgGR0B04NqYZ2pyaAdN6ANoCEdAsUqG8M/hVHV9lChoBke/uVWS2Yv38GgHSxRoCEdAsUqzSjQAuXV9lChoBkfASxuOQyRB/2gHS9xoCEdAsUsv0aqCH3V9lChoBkdAQmYhwEQoTmgHTegDaAhHQLFMcjBVMmF1fZQoaAZHQGKMUqpcX3xoB02VA2gIR0CxUeCdOIqLdX2UKGgGR0Bk+naWX1J2aAdN6ANoCEdAsVMSEi+tbXV9lChoBkdAbwidzXBgu2gHTegDaAhHQLFTbu63AmB1fZQoaAZHQERNk5p8F6loB0ueaAhHQLFUFcbiqAB1fZQoaAZHQFVvxFAmiQFoB03oA2gIR0CxVJavJRwZdX2UKGgGR8AywmrKeTV2aAdL0WgIR0CxVWp1V5rydX2UKGgGR8AxCJq7AckuaAdNZQFoCEdAsVbXkFOfunV9lChoBkdAVZeqMm4RVmgHTekCaAhHQLFXBy4Wk8B1fZQoaAZHQDdohq0tyxRoB019AWgIR0CxWU64Ds+ndX2UKGgGR0BlcquZCv5haAdN6ANoCEdAsVnYOPNmlXV9lChoBkdAUkExREWqLmgHTVUBaAhHQLFbiJtBOYZ1fZQoaAZHwBcOVLSNOudoB03oA2gIR0CxW9xxLkCFdX2UKGgGR8ALSmKqGUOeaAdLFGgIR0CxW/z+aScLdX2UKGgGR0BEYtygf2boaAdN6ANoCEdAsV28/8l5W3V9lChoBkdAXGJme18b72gHTegDaAhHQLFh71dgOSZ1fZQoaAZHP+DRYRujynVoB0sUaAhHQLFiH6J66at1fZQoaAZHQGiOeF10T11oB00zAmgIR0CxYujKLbYcdX2UKGgGR0BvGW07bL2YaAdN6ANoCEdAsWO+/L1VYXV9lChoBkdAbjsLux8lX2gHTegDaAhHQLFkMosZpBZ1fZQoaAZHv8XffoA4n4RoB0sVaAhHQLFkVfpUxVR1fZQoaAZHQGNnomois4loB03oA2gIR0CxaKbzK9wndX2UKGgGR0BiTAI8hcJMaAdN6ANoCEdAsWlgQd0aInV9lChoBkdAZCpFERaouWgHTegDaAhHQLFqguy/sVt1fZQoaAZHQGeAVjiGWUtoB03oA2gIR0Cxay4bsF+vdX2UKGgGR0Bga/PiT+vRaAdN6ANoCEdAsXEI2Kl54XV9lChoBkdAX9k+zMRpUWgHTegDaAhHQLFx/Zwn6VN1fZQoaAZHQHAgd+b3Gn5oB03oA2gIR0CxctZBsyi3dX2UKGgGR0B0dpRLsa86aAdN6ANoCEdAsXNwLgGbC3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 10, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.5, "vf_coef": 0.0, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5069f41dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5069f41e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5069f41ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5069f41f70>", "_build": "<function ActorCriticPolicy._build at 0x7f5069f44040>", "forward": "<function ActorCriticPolicy.forward at 0x7f5069f440d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5069f44160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5069f441f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5069f44280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5069f44310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5069f443a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5069f44430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5069f435c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682531118267572815, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMCqhD60uDK/Cc1nvnCXNj8LCqW/q7+KP46qD76UMSe/xCB2v86vgD9pYKE/0Z2vPhpfSj1oxQE/dlILP2Hxqzzlu5Y/zE8Ov5Tg6L5mX7u+Vv5mvXWRQr8l8Jg/tUkDwM5nNz9UWqU+/A8dP/dhaL97KIy6QmAjv/aRBL7rtyc/kvENPleKjD3riva+dngAPPRwtr9aDhTAwvgcv4FbIj+Ld7698WbgvvyUDj+LtxO9LFVNP+0R7T9QLGm+sXKdvv9L5T0bHwbAOC69P51a5j4KqrK/VFqlPmGh0L9AAo0/Bl4QPvsZIb/x/Oy9I4ATP8zIfr0yp4i9WhBqv+jfzr0XjZu/0CK+PgFJ3j4HWbc/M2GVP+LMp7xIK8c+B1JlQMxCzD+7/di+QRnHPnz2mL+GBCM/LPPPv/HprT+ufTQ/zmc3P1RapT5hodC/92Fov3gI7z4oqQm/TwOQPOwGhD8/blC/wQqXP7UPBL8g3/q+mKIuvwcu0j8hEGg/q4gBP3790j6h2hJAntwKP0mUkzyuOMQ+QJVQvWoyRb/5mn8+OPIkv1un0D5MvCU/TY2TPs5nNz9UWqU+/A8dP/dhaL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC/bbG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAR64vPQAAAAChaea/AAAAAPG4B74AAAAASmHoPwAAAABGfyI9AAAAAO4G3D8AAAAAMgzAPQAAAAC/q+6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq3dltgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgO49h7wAAAAArNMAwAAAAABZ34q8AAAAAB247T8AAAAAAQq6vQAAAADPtvA/AAAAABLgWD0AAAAAUu37vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG5Cc7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA9/Su9AAAAADfj/r8AAAAAICjzvQAAAADyPts/AAAAAFo2zzsAAAAAr7bpPwAAAACK+7Y9AAAAAJ/Z2L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSNs41AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAMsCfPQAAAAAx3ti/AAAAAAtb4j0AAAAAnw7zPwAAAAAYBgE+AAAAABgn4z8AAAAAz2e7PQAAAAAAvPe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJbj17SiM5yMAWyUTegDjAF0lEdArRaH6GgzxnV9lChoBkdAmKq7nHNorWgHTegDaAhHQK0Z3Tx5LRN1fZQoaAZHQJdVvxEv0yxoB03oA2gIR0CtHyfPomojdX2UKGgGR0CU1mDnvDxcaAdN6ANoCEdArR9qR2bG3nV9lChoBkdAlyTxq46OpGgHTegDaAhHQK0ko6reZXx1fZQoaAZHQJjdCnMt9QZoB03oA2gIR0CtJ4gPd2xIdX2UKGgGR0CWy+X7+DODaAdN6ANoCEdArSz1GgBcRnV9lChoBkdAmVABT0g8sGgHTegDaAhHQK0tOBZIQOF1fZQoaAZHQJhqHerMkhRoB03oA2gIR0CtNJUMgEEDdX2UKGgGR0CZb/pX6qKhaAdN6ANoCEdArTgg9vCMxXV9lChoBkdAmm4q6WgOBmgHTegDaAhHQK09p1dPci51fZQoaAZHQJaAt6u4gA9oB03oA2gIR0CtPe2yTpxFdX2UKGgGR0CZFoi8nNPhaAdN6ANoCEdArUMZUFSsKnV9lChoBkdAl1Y225QP7WgHTegDaAhHQK1FW6q814x1fZQoaAZHQJHjIPBi1AtoB03oA2gIR0CtStNVrAP/dX2UKGgGR0CYsljNIK+jaAdN6ANoCEdArUshIH1OCXV9lChoBkdAmi5UypJf6WgHTegDaAhHQK1SJNKyv9t1fZQoaAZHQJk4up97WupoB03oA2gIR0CtVamG/N7jdX2UKGgGR0CU9WhVU+9raAdN6ANoCEdArVusVLzwt3V9lChoBkdAmC+FaGHpKWgHTegDaAhHQK1b8p84Pwx1fZQoaAZHQJYHXS6UaAFoB03oA2gIR0CtYRsUqQRxdX2UKGgGR0CWKCUFjd56aAdN6ANoCEdArWOXA6+36XV9lChoBkdAmjPvKISDiGgHTegDaAhHQK1pkKKpDNR1fZQoaAZHQJeu1SXMQmNoB03oA2gIR0CtaddSMtK7dX2UKGgGR0CXf+yI55quaAdN6ANoCEdArXCm7aqS5nV9lChoBkdAl8UasdT5wmgHTegDaAhHQK10REWIoE11fZQoaAZHQJlZCWu5jH5oB03oA2gIR0CtenptSAH3dX2UKGgGR0CXqDUliSaFaAdN6ANoCEdArXq/ocJdB3V9lChoBkdAl9kQCfYjB2gHTegDaAhHQK1/5gXMyJt1fZQoaAZHQJj7bKHO8kFoB03oA2gIR0CtgjnNgSezdX2UKGgGR0CbjFstkFwDaAdN6ANoCEdArYfAZOzpo3V9lChoBkdAlqzvgeii7GgHTegDaAhHQK2IBYXfqHJ1fZQoaAZHQJvfdTjvNNdoB03oA2gIR0Ctjmq9XcQAdX2UKGgGR0Ca3AXPJJXhaAdN6ANoCEdArZHc3S8aoHV9lChoBkdAnI07mdRR/GgHTegDaAhHQK2YdNet0V91fZQoaAZHQJk1jT3IuGtoB03oA2gIR0CtmLlme18cdX2UKGgGR0CbEX/vv0AcaAdN6ANoCEdArZ32tQsPKHV9lChoBkdAmpof0VafSWgHTegDaAhHQK2gSeLehwl1fZQoaAZHQJp2RbmlqJxoB03oA2gIR0CtpnmlqJuVdX2UKGgGR0CaxIhRZU1iaAdN6ANoCEdAraa/Zf2K23V9lChoBkdAmf1xDTjNp2gHTegDaAhHQK2tG/0ulGh1fZQoaAZHQJregsunMt9oB03oA2gIR0CtsI+d07r+dX2UKGgGR0CY8yWeYlY2aAdN6ANoCEdArbcglnh86XV9lChoBkdAmzKJAD7qIWgHTegDaAhHQK23Y4bS7Xh1fZQoaAZHQJ5qZdu5z5poB03oA2gIR0CtvIzdk8RudX2UKGgGR0CdavgYP5HmaAdN6ANoCEdArb7UXzlLe3V9lChoBkdAmywp6lchT2gHTegDaAhHQK3ETYL9deJ1fZQoaAZHQJ7GCEHt4RpoB03oA2gIR0CtxJDz7MxHdX2UKGgGR0CcyUNKRMewaAdN6ANoCEdArcpleWv8qHV9lChoBkdAnP82HDaXbGgHTegDaAhHQK3Nqv0RODd1fZQoaAZHQJrHsqur6tVoB03oA2gIR0Ct1OCGnGbTdX2UKGgGR0Cb3w93KSxJaAdN6ANoCEdArdUkpNKywHV9lChoBkdAlQZJW3jMmmgHTegDaAhHQK3aXMXaakR1fZQoaAZHQJeqjLfUF0RoB03oA2gIR0Ct3K3aSLZSdX2UKGgGR0CVO2xH5JsgaAdN6ANoCEdAreK7QNTcZnV9lChoBkdAltQtYSxqwmgHTegDaAhHQK3jDt65Xlt1fZQoaAZHQJRqMDklu3toB03oA2gIR0Ct6Pd7WuoxdX2UKGgGR0CT4kS75Ec9aAdN6ANoCEdArexOtlqagHV9lChoBkdAldlPTXrdFmgHTegDaAhHQK3zvuUliSd1fZQoaAZHQJOHldAxBVxoB03oA2gIR0Ct9ARTsIE9dX2UKGgGR0CVXDEG7jDLaAdN6ANoCEdArfk3KbKA8XV9lChoBkdAllGqqbSZ0GgHTegDaAhHQK37hlKbrkd1fZQoaAZHQJXZKKFZgXxoB03oA2gIR0CuAQKOtGNJdX2UKGgGR0CUwHnWrfcfaAdN6ANoCEdArgFHVAiV0XV9lChoBkdAlLP2d/axo2gHTegDaAhHQK4GzCoCMgl1fZQoaAZHQIyIOAy2x6hoB03oA2gIR0CuCg4W1twadX2UKGgGR0CTU6aR6nivaAdN6ANoCEdArhHD/GVAzHV9lChoBkdAjvMHX2/SIGgHTegDaAhHQK4SDGNJe3R1fZQoaAZHQJH7TWy1NQFoB03oA2gIR0CuF0W1MM7VdX2UKGgGR0CTucThYNiIaAdN6ANoCEdArhmLOcDr7nV9lChoBkdAl3FwU+LWJGgHTegDaAhHQK4e4CsfaHt1fZQoaAZHQJdgkjD8+A5oB03oA2gIR0CuHz94mkWRdX2UKGgGR0CWgv4yoGY8aAdN6ANoCEdAriUGEZiuuHV9lChoBkdAlh1KKYRdyGgHTegDaAhHQK4oOtbs4T91fZQoaAZHQJPjR8twrDtoB03oA2gIR0CuMA7vXsgMdX2UKGgGR0CSojAT7EYPaAdN6ANoCEdArjBRrFfiP3V9lChoBkdAkI9uRs/IKmgHTegDaAhHQK41bf5ULlV1fZQoaAZHQJKCsBxPwd9oB03oA2gIR0CuN7kaVD8cdX2UKGgGR0CThmBLwnYyaAdN6ANoCEdArj0kSkCV8nV9lChoBkdAl2ru4oZydWgHTegDaAhHQK49aeaKDTV1fZQoaAZHQJVJw/keZG9oB03oA2gIR0CuQo6F/QSjdX2UKGgGR0CTyLy9EkSmaAdN6ANoCEdArkVP8n/kvXV9lChoBkdAl4wM9Oh0yWgHTegDaAhHQK5NNEHdGiJ1fZQoaAZHQJfWubtqpLpoB03oA2gIR0CuTaHUMG5ddX2UKGgGR0CTRGRqXWvsaAdN6ANoCEdArlLlZid8RnV9lChoBkdAmnMxcJMQE2gHTegDaAhHQK5VHaB7NSt1fZQoaAZHQJmhrYPGyX5oB03oA2gIR0CuWnaPbO/tdX2UKGgGR0CXYcKLbYbsaAdN6ANoCEdArlq7KA8SwnV9lChoBkdAlZsXqVyFPGgHTegDaAhHQK5gpi8WbgF1fZQoaAZHQI3VYigTRIBoB03oA2gIR0CuY0DBMzuXdX2UKGgGR0CRj5pWFN+LaAdN6ANoCEdArmsyGi5/b3V9lChoBkdAlMtMTviLl2gHTegDaAhHQK5rnGRV6u51fZQoaAZHQJjZhsabWmRoB03oA2gIR0CucSp2MbWFdX2UKGgGR0CZUFWac7QtaAdN6ANoCEdArnNjRplBhXV9lChoBkdAnToTFqBVdWgHTegDaAhHQK541VEuxr11fZQoaAZHQJuGaN70Fr5oB03oA2gIR0CueR9IPK+0dX2UKGgGR0CZaVsNDtw8aAdN6ANoCEdArn5GVZ9uxnV9lChoBkdAmIk5k078vWgHTegDaAhHQK6AifQKKHh1fZQoaAZHQJoZBK02LpBoB03oA2gIR0CuiEtQbdaddX2UKGgGR0Cb9Ku/k/8maAdN6ANoCEdAroi4jGDL83VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1859.7633579089452, "std_reward": 118.69771030493273, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-26T18:50:58.257280"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2170
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:912e189f6687e7c94469d78a27029c18cac04418eee643e0080e983b5f9b0747
|
3 |
size 2170
|