jrnold commited on
Commit
a380d05
1 Parent(s): b71170a

Commit for Huggingface Deep RL - v2

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 250.34 +/- 20.05
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc0c7071940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc0c70719d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc0c7071a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc0c7071af0>", "_build": "<function ActorCriticPolicy._build at 0x7fc0c7071b80>", "forward": "<function ActorCriticPolicy.forward at 0x7fc0c7071c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc0c7071ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc0c7071d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc0c7071dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc0c7071e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc0c7071ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc0c7071f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc0c7069e70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673826854848933987, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANrRuT1uLJ49QxC0PdNbgL7Gefg9akBHPAAAAAAAAAAADeiJva4Roroh3wi6QMPttMSKZjmDaB05AACAPwAAgD8NLZ+92y0LP9CetT1L7Kq+10HEPBFiPD0AAAAAAAAAABr1Ir42fWG8AYg0O43SbjnT2b09tUZzugAAgD8AAIA/ZtWJveEMhLp1kxG5JIpmtq7Lxrr1gSg4AACAPwAAgD+zwx29XA88ukG/Irja4IUyLEZ9u0tFPDcAAIA/AACAP00ITD1cZ026JbNYuoDA6rULxgi7bX5ONQAAgD8AAIA/Te8UPR/lhLl+fee8l3GftfHYmbtUTBU1AACAPwAAAAANdIq9j14kuijo4TvmyY84OUuKOXG6B7kAAIA/AACAP4AxKL4dzpo/ZWQUvqLPn77P8Ba+WOD/PAAAAAAAAAAAGg6rPUjHvj8pMDc/a+hAPpfZzLoBWTE+AAAAAAAAAABNpdI9xEolP9URSz13Yn++PnVAPZXFVL0AAAAAAAAAAGbk3zy/4QU/3kWTvSK0br6So2K8/XdCPQAAAAAAAAAAM0LQvRRChrqb1NI7b0U+N5d+9rp6gDQ2AACAPwAAAAAAVn89uPiqu7irWLwDr4E8NYwSPds+Xb0AAIA/AACAPzNvVL0phE26Jko/OloplzT9pYG75uVfuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhNTt7Cs8ZUCUhpRSlIwBbJRN6AOMAXSUR0CSlJ0g8r7PdX2UKGgGaAloD0MIZTbIJKOdY0CUhpRSlGgVTegDaBZHQJKYsqLCN0h1fZQoaAZoCWgPQwi0PA/uTkNiQJSGlFKUaBVN6ANoFkdAkpvuuieum3V9lChoBmgJaA9DCALyJVQwWHFAlIaUUpRoFU3IAmgWR0CSn7UKzAvddX2UKGgGaAloD0MIon2s4Dd/Y0CUhpRSlGgVTegDaBZHQJKgYk7fYSR1fZQoaAZoCWgPQwiloUYhSeRhQJSGlFKUaBVN6ANoFkdAkqBxyCFsYXV9lChoBmgJaA9DCChGlsyxO2BAlIaUUpRoFU3oA2gWR0CSog1MdtEYdX2UKGgGaAloD0MI36mAex49YkCUhpRSlGgVTegDaBZHQJKif4dp7C11fZQoaAZoCWgPQwgRN6eSAUNkQJSGlFKUaBVN6ANoFkdAkqt4gV45cXV9lChoBmgJaA9DCN0iMNY3ikhAlIaUUpRoFUvraBZHQJKttpudf9h1fZQoaAZoCWgPQwj6X65FCxtkQJSGlFKUaBVN6ANoFkdAkrLvc8DB/XV9lChoBmgJaA9DCHR5c7hWmmZAlIaUUpRoFU3oA2gWR0CSujDO1OTJdX2UKGgGaAloD0MImDWxwFcpY0CUhpRSlGgVTegDaBZHQJLQ+A9V3ll1fZQoaAZoCWgPQwjyCdl5Gw9kQJSGlFKUaBVN6ANoFkdAktPWBOHnEHV9lChoBmgJaA9DCDnv/+OEPl9AlIaUUpRoFU3oA2gWR0CS1lkeZG8VdX2UKGgGaAloD0MIKT4+IbvbY0CUhpRSlGgVTegDaBZHQJLXb0163RZ1fZQoaAZoCWgPQwjdzr7yIOFiQJSGlFKUaBVN6ANoFkdAktkB5xBE8nV9lChoBmgJaA9DCPH2IARkr3FAlIaUUpRoFU3lAmgWR0CS2iLH+6y0dX2UKGgGaAloD0MIJclzfZ9VY0CUhpRSlGgVTegDaBZHQJLcO+rU9ZB1fZQoaAZoCWgPQwhiaeBHte9lQJSGlFKUaBVN6ANoFkdAkt9oYm9g4XV9lChoBmgJaA9DCIeGxahrymFAlIaUUpRoFU3oA2gWR0CS4gK2rn1WdX2UKGgGaAloD0MII2jMJGrlZECUhpRSlGgVTegDaBZHQJLlAGnn+yZ1fZQoaAZoCWgPQwiGBIwub5NfQJSGlFKUaBVN6ANoFkdAkuWfqHGjsXV9lChoBmgJaA9DCA7ABkSIGmBAlIaUUpRoFU3oA2gWR0CS55W0Z3s5dX2UKGgGaAloD0MIzk9xHPhLYUCUhpRSlGgVTegDaBZHQJLw5WIXTE11fZQoaAZoCWgPQwhNgjek0UxnQJSGlFKUaBVN6ANoFkdAkvNB+nZTQ3V9lChoBmgJaA9DCEwXYvXHqGNAlIaUUpRoFU3oA2gWR0CS+F7Xg9/0dX2UKGgGaAloD0MIlWWIY91ZZUCUhpRSlGgVTegDaBZHQJL/qPLgXM11fZQoaAZoCWgPQwgK9fQR+DVwQJSGlFKUaBVNAwJoFkdAkwE047zTW3V9lChoBmgJaA9DCJur5jmip2FAlIaUUpRoFU3oA2gWR0CTFfDQ7cO9dX2UKGgGaAloD0MIwJZXrjfqZECUhpRSlGgVTegDaBZHQJMYsSi/O+t1fZQoaAZoCWgPQwhPIOwUK+xiQJSGlFKUaBVN6ANoFkdAkxr/A0sOG3V9lChoBmgJaA9DCALU1LK11GBAlIaUUpRoFU3oA2gWR0CTHBmI0qH5dX2UKGgGaAloD0MI/MVsySq/ZECUhpRSlGgVTegDaBZHQJMdrYPGyX51fZQoaAZoCWgPQwj/ykqTUvNlQJSGlFKUaBVN6ANoFkdAkx7g1ejVQXV9lChoBmgJaA9DCK5GdqXlIWZAlIaUUpRoFU3oA2gWR0CTIRwXqJMydX2UKGgGaAloD0MI2o6puzIhZUCUhpRSlGgVTegDaBZHQJMkrsqril11fZQoaAZoCWgPQwjFAfT7fv9gQJSGlFKUaBVN6ANoFkdAkye8/t6X0HV9lChoBmgJaA9DCOli00qh6GZAlIaUUpRoFU3oA2gWR0CTKyRlpXZHdX2UKGgGaAloD0MImnyzzY0RXECUhpRSlGgVTegDaBZHQJMuYyrPt2N1fZQoaAZoCWgPQwi5VKUtrtdIQJSGlFKUaBVNCAFoFkdAkzcpYLb5/XV9lChoBmgJaA9DCIqvdhRnkWBAlIaUUpRoFU3oA2gWR0CTOeVJ+UhWdX2UKGgGaAloD0MIMxmO57N7ZECUhpRSlGgVTegDaBZHQJM84FyJbdJ1fZQoaAZoCWgPQwgfR3NkZWdhQJSGlFKUaBVN6ANoFkdAk0P9LQHAynV9lChoBmgJaA9DCGObVDRW2G1AlIaUUpRoFU0bAWgWR0CTTgj7ALy+dX2UKGgGaAloD0MInBn9aLgrZUCUhpRSlGgVTegDaBZHQJNPiPtD2J11fZQoaAZoCWgPQwhTdvpBXbhkQJSGlFKUaBVN6ANoFkdAk1FLmdRR/HV9lChoBmgJaA9DCA0Zj1IJc25AlIaUUpRoFU0qAmgWR0CTUtru6VdHdX2UKGgGaAloD0MI5QmEneJcZ0CUhpRSlGgVTegDaBZHQJNmOc9W6sh1fZQoaAZoCWgPQwjL8nUZ/ghhQJSGlFKUaBVN6ANoFkdAk2koKpkwvnV9lChoBmgJaA9DCAFolC79Jl1AlIaUUpRoFU3oA2gWR0CTa6AVO9FndX2UKGgGaAloD0MII2WLpN3JbkCUhpRSlGgVTZcBaBZHQJNsXN2TxG51fZQoaAZoCWgPQwj+fFuwVJNlQJSGlFKUaBVN6ANoFkdAk2zBU70WdnV9lChoBmgJaA9DCOBkG7iDAGRAlIaUUpRoFU3oA2gWR0CTblWhAWzodX2UKGgGaAloD0MIr1xvmyn7Y0CUhpRSlGgVTegDaBZHQJNvbL5hz/91fZQoaAZoCWgPQwhjDRe5p1JlQJSGlFKUaBVN6ANoFkdAk3GzvRZ2ZHV9lChoBmgJaA9DCLAcIQN5RERAlIaUUpRoFUv9aBZHQJNx7ZZjhDR1fZQoaAZoCWgPQwibkNYYdIVfQJSGlFKUaBVN6ANoFkdAk3UBzq8lHHV9lChoBmgJaA9DCCkIHt/eJWdAlIaUUpRoFU3oA2gWR0CTfntA9mpVdX2UKGgGaAloD0MIp8mMt5UrZUCUhpRSlGgVTegDaBZHQJOJVPJq7Ad1fZQoaAZoCWgPQwhu93KfnJliQJSGlFKUaBVN6ANoFkdAk5D0q6OHWXV9lChoBmgJaA9DCJ2f4jjw9ltAlIaUUpRoFU3oA2gWR0CTltQd0aIfdX2UKGgGaAloD0MI/aTap+ODZECUhpRSlGgVTegDaBZHQJOXrwTdtVJ1fZQoaAZoCWgPQwiVRPZBFsxkQJSGlFKUaBVN6ANoFkdAk5kXvDxb0XV9lChoBmgJaA9DCGvVrglpkGVAlIaUUpRoFU3oA2gWR0CTm17p3X7MdX2UKGgGaAloD0MImtL6W4KBZUCUhpRSlGgVTegDaBZHQJOwDTH80k51fZQoaAZoCWgPQwi1iv7QTD9iQJSGlFKUaBVN6ANoFkdAk7JoDxLCenV9lChoBmgJaA9DCOjaF9ALhGFAlIaUUpRoFU3oA2gWR0CTsxJTl1bJdX2UKGgGaAloD0MI4uoAiDtPYECUhpRSlGgVTegDaBZHQJOzb9qDbrV1fZQoaAZoCWgPQwjVBbzMMIlgQJSGlFKUaBVN6ANoFkdAk7TO2d/ax3V9lChoBmgJaA9DCLMIxVbQql1AlIaUUpRoFU3oA2gWR0CTtc8P4EfUdX2UKGgGaAloD0MIBmUaTS5lYkCUhpRSlGgVTegDaBZHQJO36eAd4ml1fZQoaAZoCWgPQwjysFBrGjlkQJSGlFKUaBVN6ANoFkdAk7ggyM1jzHV9lChoBmgJaA9DCFNYqaAil2NAlIaUUpRoFU3oA2gWR0CTuxKLKmsOdX2UKGgGaAloD0MIgxd9BemmZkCUhpRSlGgVTegDaBZHQJPEWfpUxVR1fZQoaAZoCWgPQwi9cOfCyLRjQJSGlFKUaBVN6ANoFkdAk9A1um78N3V9lChoBmgJaA9DCN0MN+Bzv2NAlIaUUpRoFU3oA2gWR0CT2NeWOZLJdX2UKGgGaAloD0MI+UogJfaIYUCUhpRSlGgVTegDaBZHQJPf8gU1yeZ1fZQoaAZoCWgPQwhQbtv3qMlxQJSGlFKUaBVN9AJoFkdAk+AS9Zid8XV9lChoBmgJaA9DCEkrvqHwFl9AlIaUUpRoFU3oA2gWR0CT4Pd92HLzdX2UKGgGaAloD0MIL8A+OnUAZ0CUhpRSlGgVTegDaBZHQJPilS9/SYx1fZQoaAZoCWgPQwg0K9uHPLJiQJSGlFKUaBVN6ANoFkdAk+UdqQA+6nV9lChoBmgJaA9DCIuKOJ1kDmVAlIaUUpRoFU3oA2gWR0CT+f8/D+BIdX2UKGgGaAloD0MI8u8zLhxbXUCUhpRSlGgVTegDaBZHQJP8QaLn9vV1fZQoaAZoCWgPQwjC3O7lPsljQJSGlFKUaBVN6ANoFkdAk/zpuEVWS3V9lChoBmgJaA9DCDEjvD0IpWRAlIaUUpRoFU3oA2gWR0CT/UVI7NjcdX2UKGgGaAloD0MIoaF/govpSUCUhpRSlGgVS/poFkdAk/70ELYwqXV9lChoBmgJaA9DCIEIceVsi2NAlIaUUpRoFU3oA2gWR0CT/8QoCuEFdX2UKGgGaAloD0MIHeVgNgEdXECUhpRSlGgVTegDaBZHQJQB6QfZElV1fZQoaAZoCWgPQwgk7UYf849jQJSGlFKUaBVN6ANoFkdAlAIel0o0AXV9lChoBmgJaA9DCGiR7Xy/u2VAlIaUUpRoFU3oA2gWR0CUBRmAskIHdX2UKGgGaAloD0MIHa9A9KQ0Y0CUhpRSlGgVTegDaBZHQJQOCTzND+l1fZQoaAZoCWgPQwi28pL/SSNmQJSGlFKUaBVN6ANoFkdAlBkUqDsdDXV9lChoBmgJaA9DCMlxp3Qwz2ZAlIaUUpRoFU3oA2gWR0CUIaM5wOvudX2UKGgGaAloD0MIPsvz4O4ZcECUhpRSlGgVTVQCaBZHQJQjhzq8lHB1fZQoaAZoCWgPQwhAFw0ZD0JhQJSGlFKUaBVN6ANoFkdAlChdyLhrFnV9lChoBmgJaA9DCB4Wak1zYGNAlIaUUpRoFU3oA2gWR0CUKU53Tuv2dX2UKGgGaAloD0MItTNMbSmEY0CUhpRSlGgVTegDaBZHQJQq4p+c6Nl1fZQoaAZoCWgPQwiie9Y1WlNlQJSGlFKUaBVN6ANoFkdAlC1lqzqrzXV9lChoBmgJaA9DCJF++zpwGmJAlIaUUpRoFU3oA2gWR0CUL/WluWKNdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92b31955d6dbb6705a8d5c17cc251bbb335f28792e48a9b7ec0b73efab621a33
3
+ size 147420
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc0c7071940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc0c70719d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc0c7071a60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc0c7071af0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc0c7071b80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc0c7071c10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc0c7071ca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc0c7071d30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc0c7071dc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc0c7071e50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc0c7071ee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc0c7071f70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fc0c7069e70>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673826854848933987,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANrRuT1uLJ49QxC0PdNbgL7Gefg9akBHPAAAAAAAAAAADeiJva4Roroh3wi6QMPttMSKZjmDaB05AACAPwAAgD8NLZ+92y0LP9CetT1L7Kq+10HEPBFiPD0AAAAAAAAAABr1Ir42fWG8AYg0O43SbjnT2b09tUZzugAAgD8AAIA/ZtWJveEMhLp1kxG5JIpmtq7Lxrr1gSg4AACAPwAAgD+zwx29XA88ukG/Irja4IUyLEZ9u0tFPDcAAIA/AACAP00ITD1cZ026JbNYuoDA6rULxgi7bX5ONQAAgD8AAIA/Te8UPR/lhLl+fee8l3GftfHYmbtUTBU1AACAPwAAAAANdIq9j14kuijo4TvmyY84OUuKOXG6B7kAAIA/AACAP4AxKL4dzpo/ZWQUvqLPn77P8Ba+WOD/PAAAAAAAAAAAGg6rPUjHvj8pMDc/a+hAPpfZzLoBWTE+AAAAAAAAAABNpdI9xEolP9URSz13Yn++PnVAPZXFVL0AAAAAAAAAAGbk3zy/4QU/3kWTvSK0br6So2K8/XdCPQAAAAAAAAAAM0LQvRRChrqb1NI7b0U+N5d+9rp6gDQ2AACAPwAAAAAAVn89uPiqu7irWLwDr4E8NYwSPds+Xb0AAIA/AACAPzNvVL0phE26Jko/OloplzT9pYG75uVfuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhNTt7Cs8ZUCUhpRSlIwBbJRN6AOMAXSUR0CSlJ0g8r7PdX2UKGgGaAloD0MIZTbIJKOdY0CUhpRSlGgVTegDaBZHQJKYsqLCN0h1fZQoaAZoCWgPQwi0PA/uTkNiQJSGlFKUaBVN6ANoFkdAkpvuuieum3V9lChoBmgJaA9DCALyJVQwWHFAlIaUUpRoFU3IAmgWR0CSn7UKzAvddX2UKGgGaAloD0MIon2s4Dd/Y0CUhpRSlGgVTegDaBZHQJKgYk7fYSR1fZQoaAZoCWgPQwiloUYhSeRhQJSGlFKUaBVN6ANoFkdAkqBxyCFsYXV9lChoBmgJaA9DCChGlsyxO2BAlIaUUpRoFU3oA2gWR0CSog1MdtEYdX2UKGgGaAloD0MI36mAex49YkCUhpRSlGgVTegDaBZHQJKif4dp7C11fZQoaAZoCWgPQwgRN6eSAUNkQJSGlFKUaBVN6ANoFkdAkqt4gV45cXV9lChoBmgJaA9DCN0iMNY3ikhAlIaUUpRoFUvraBZHQJKttpudf9h1fZQoaAZoCWgPQwj6X65FCxtkQJSGlFKUaBVN6ANoFkdAkrLvc8DB/XV9lChoBmgJaA9DCHR5c7hWmmZAlIaUUpRoFU3oA2gWR0CSujDO1OTJdX2UKGgGaAloD0MImDWxwFcpY0CUhpRSlGgVTegDaBZHQJLQ+A9V3ll1fZQoaAZoCWgPQwjyCdl5Gw9kQJSGlFKUaBVN6ANoFkdAktPWBOHnEHV9lChoBmgJaA9DCDnv/+OEPl9AlIaUUpRoFU3oA2gWR0CS1lkeZG8VdX2UKGgGaAloD0MIKT4+IbvbY0CUhpRSlGgVTegDaBZHQJLXb0163RZ1fZQoaAZoCWgPQwjdzr7yIOFiQJSGlFKUaBVN6ANoFkdAktkB5xBE8nV9lChoBmgJaA9DCPH2IARkr3FAlIaUUpRoFU3lAmgWR0CS2iLH+6y0dX2UKGgGaAloD0MIJclzfZ9VY0CUhpRSlGgVTegDaBZHQJLcO+rU9ZB1fZQoaAZoCWgPQwhiaeBHte9lQJSGlFKUaBVN6ANoFkdAkt9oYm9g4XV9lChoBmgJaA9DCIeGxahrymFAlIaUUpRoFU3oA2gWR0CS4gK2rn1WdX2UKGgGaAloD0MII2jMJGrlZECUhpRSlGgVTegDaBZHQJLlAGnn+yZ1fZQoaAZoCWgPQwiGBIwub5NfQJSGlFKUaBVN6ANoFkdAkuWfqHGjsXV9lChoBmgJaA9DCA7ABkSIGmBAlIaUUpRoFU3oA2gWR0CS55W0Z3s5dX2UKGgGaAloD0MIzk9xHPhLYUCUhpRSlGgVTegDaBZHQJLw5WIXTE11fZQoaAZoCWgPQwhNgjek0UxnQJSGlFKUaBVN6ANoFkdAkvNB+nZTQ3V9lChoBmgJaA9DCEwXYvXHqGNAlIaUUpRoFU3oA2gWR0CS+F7Xg9/0dX2UKGgGaAloD0MIlWWIY91ZZUCUhpRSlGgVTegDaBZHQJL/qPLgXM11fZQoaAZoCWgPQwgK9fQR+DVwQJSGlFKUaBVNAwJoFkdAkwE047zTW3V9lChoBmgJaA9DCJur5jmip2FAlIaUUpRoFU3oA2gWR0CTFfDQ7cO9dX2UKGgGaAloD0MIwJZXrjfqZECUhpRSlGgVTegDaBZHQJMYsSi/O+t1fZQoaAZoCWgPQwhPIOwUK+xiQJSGlFKUaBVN6ANoFkdAkxr/A0sOG3V9lChoBmgJaA9DCALU1LK11GBAlIaUUpRoFU3oA2gWR0CTHBmI0qH5dX2UKGgGaAloD0MI/MVsySq/ZECUhpRSlGgVTegDaBZHQJMdrYPGyX51fZQoaAZoCWgPQwj/ykqTUvNlQJSGlFKUaBVN6ANoFkdAkx7g1ejVQXV9lChoBmgJaA9DCK5GdqXlIWZAlIaUUpRoFU3oA2gWR0CTIRwXqJMydX2UKGgGaAloD0MI2o6puzIhZUCUhpRSlGgVTegDaBZHQJMkrsqril11fZQoaAZoCWgPQwjFAfT7fv9gQJSGlFKUaBVN6ANoFkdAkye8/t6X0HV9lChoBmgJaA9DCOli00qh6GZAlIaUUpRoFU3oA2gWR0CTKyRlpXZHdX2UKGgGaAloD0MImnyzzY0RXECUhpRSlGgVTegDaBZHQJMuYyrPt2N1fZQoaAZoCWgPQwi5VKUtrtdIQJSGlFKUaBVNCAFoFkdAkzcpYLb5/XV9lChoBmgJaA9DCIqvdhRnkWBAlIaUUpRoFU3oA2gWR0CTOeVJ+UhWdX2UKGgGaAloD0MIMxmO57N7ZECUhpRSlGgVTegDaBZHQJM84FyJbdJ1fZQoaAZoCWgPQwgfR3NkZWdhQJSGlFKUaBVN6ANoFkdAk0P9LQHAynV9lChoBmgJaA9DCGObVDRW2G1AlIaUUpRoFU0bAWgWR0CTTgj7ALy+dX2UKGgGaAloD0MInBn9aLgrZUCUhpRSlGgVTegDaBZHQJNPiPtD2J11fZQoaAZoCWgPQwhTdvpBXbhkQJSGlFKUaBVN6ANoFkdAk1FLmdRR/HV9lChoBmgJaA9DCA0Zj1IJc25AlIaUUpRoFU0qAmgWR0CTUtru6VdHdX2UKGgGaAloD0MI5QmEneJcZ0CUhpRSlGgVTegDaBZHQJNmOc9W6sh1fZQoaAZoCWgPQwjL8nUZ/ghhQJSGlFKUaBVN6ANoFkdAk2koKpkwvnV9lChoBmgJaA9DCAFolC79Jl1AlIaUUpRoFU3oA2gWR0CTa6AVO9FndX2UKGgGaAloD0MII2WLpN3JbkCUhpRSlGgVTZcBaBZHQJNsXN2TxG51fZQoaAZoCWgPQwj+fFuwVJNlQJSGlFKUaBVN6ANoFkdAk2zBU70WdnV9lChoBmgJaA9DCOBkG7iDAGRAlIaUUpRoFU3oA2gWR0CTblWhAWzodX2UKGgGaAloD0MIr1xvmyn7Y0CUhpRSlGgVTegDaBZHQJNvbL5hz/91fZQoaAZoCWgPQwhjDRe5p1JlQJSGlFKUaBVN6ANoFkdAk3GzvRZ2ZHV9lChoBmgJaA9DCLAcIQN5RERAlIaUUpRoFUv9aBZHQJNx7ZZjhDR1fZQoaAZoCWgPQwibkNYYdIVfQJSGlFKUaBVN6ANoFkdAk3UBzq8lHHV9lChoBmgJaA9DCCkIHt/eJWdAlIaUUpRoFU3oA2gWR0CTfntA9mpVdX2UKGgGaAloD0MIp8mMt5UrZUCUhpRSlGgVTegDaBZHQJOJVPJq7Ad1fZQoaAZoCWgPQwhu93KfnJliQJSGlFKUaBVN6ANoFkdAk5D0q6OHWXV9lChoBmgJaA9DCJ2f4jjw9ltAlIaUUpRoFU3oA2gWR0CTltQd0aIfdX2UKGgGaAloD0MI/aTap+ODZECUhpRSlGgVTegDaBZHQJOXrwTdtVJ1fZQoaAZoCWgPQwiVRPZBFsxkQJSGlFKUaBVN6ANoFkdAk5kXvDxb0XV9lChoBmgJaA9DCGvVrglpkGVAlIaUUpRoFU3oA2gWR0CTm17p3X7MdX2UKGgGaAloD0MImtL6W4KBZUCUhpRSlGgVTegDaBZHQJOwDTH80k51fZQoaAZoCWgPQwi1iv7QTD9iQJSGlFKUaBVN6ANoFkdAk7JoDxLCenV9lChoBmgJaA9DCOjaF9ALhGFAlIaUUpRoFU3oA2gWR0CTsxJTl1bJdX2UKGgGaAloD0MI4uoAiDtPYECUhpRSlGgVTegDaBZHQJOzb9qDbrV1fZQoaAZoCWgPQwjVBbzMMIlgQJSGlFKUaBVN6ANoFkdAk7TO2d/ax3V9lChoBmgJaA9DCLMIxVbQql1AlIaUUpRoFU3oA2gWR0CTtc8P4EfUdX2UKGgGaAloD0MIBmUaTS5lYkCUhpRSlGgVTegDaBZHQJO36eAd4ml1fZQoaAZoCWgPQwjysFBrGjlkQJSGlFKUaBVN6ANoFkdAk7ggyM1jzHV9lChoBmgJaA9DCFNYqaAil2NAlIaUUpRoFU3oA2gWR0CTuxKLKmsOdX2UKGgGaAloD0MIgxd9BemmZkCUhpRSlGgVTegDaBZHQJPEWfpUxVR1fZQoaAZoCWgPQwi9cOfCyLRjQJSGlFKUaBVN6ANoFkdAk9A1um78N3V9lChoBmgJaA9DCN0MN+Bzv2NAlIaUUpRoFU3oA2gWR0CT2NeWOZLJdX2UKGgGaAloD0MI+UogJfaIYUCUhpRSlGgVTegDaBZHQJPf8gU1yeZ1fZQoaAZoCWgPQwhQbtv3qMlxQJSGlFKUaBVN9AJoFkdAk+AS9Zid8XV9lChoBmgJaA9DCEkrvqHwFl9AlIaUUpRoFU3oA2gWR0CT4Pd92HLzdX2UKGgGaAloD0MIL8A+OnUAZ0CUhpRSlGgVTegDaBZHQJPilS9/SYx1fZQoaAZoCWgPQwg0K9uHPLJiQJSGlFKUaBVN6ANoFkdAk+UdqQA+6nV9lChoBmgJaA9DCIuKOJ1kDmVAlIaUUpRoFU3oA2gWR0CT+f8/D+BIdX2UKGgGaAloD0MI8u8zLhxbXUCUhpRSlGgVTegDaBZHQJP8QaLn9vV1fZQoaAZoCWgPQwjC3O7lPsljQJSGlFKUaBVN6ANoFkdAk/zpuEVWS3V9lChoBmgJaA9DCDEjvD0IpWRAlIaUUpRoFU3oA2gWR0CT/UVI7NjcdX2UKGgGaAloD0MIoaF/govpSUCUhpRSlGgVS/poFkdAk/70ELYwqXV9lChoBmgJaA9DCIEIceVsi2NAlIaUUpRoFU3oA2gWR0CT/8QoCuEFdX2UKGgGaAloD0MIHeVgNgEdXECUhpRSlGgVTegDaBZHQJQB6QfZElV1fZQoaAZoCWgPQwgk7UYf849jQJSGlFKUaBVN6ANoFkdAlAIel0o0AXV9lChoBmgJaA9DCGiR7Xy/u2VAlIaUUpRoFU3oA2gWR0CUBRmAskIHdX2UKGgGaAloD0MIHa9A9KQ0Y0CUhpRSlGgVTegDaBZHQJQOCTzND+l1fZQoaAZoCWgPQwi28pL/SSNmQJSGlFKUaBVN6ANoFkdAlBkUqDsdDXV9lChoBmgJaA9DCMlxp3Qwz2ZAlIaUUpRoFU3oA2gWR0CUIaM5wOvudX2UKGgGaAloD0MIPsvz4O4ZcECUhpRSlGgVTVQCaBZHQJQjhzq8lHB1fZQoaAZoCWgPQwhAFw0ZD0JhQJSGlFKUaBVN6ANoFkdAlChdyLhrFnV9lChoBmgJaA9DCB4Wak1zYGNAlIaUUpRoFU3oA2gWR0CUKU53Tuv2dX2UKGgGaAloD0MItTNMbSmEY0CUhpRSlGgVTegDaBZHQJQq4p+c6Nl1fZQoaAZoCWgPQwiie9Y1WlNlQJSGlFKUaBVN6ANoFkdAlC1lqzqrzXV9lChoBmgJaA9DCJF++zpwGmJAlIaUUpRoFU3oA2gWR0CUL/WluWKNdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 256,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dee671226fc117c95ecc4ed6de754c7e96ca8489abeb5af7db63270666d6cef5
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd64df53168e00a4d2258cea227540eaeff8dc1cd284234bc17d94f78c4c2be5
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (226 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 250.3416679226926, "std_reward": 20.045865028539662, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T00:25:52.573076"}