Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
thumbnail:
|
5 |
+
tags:
|
6 |
+
- pytorch
|
7 |
+
- google/pegasus-reddit_tifu
|
8 |
+
- summarization
|
9 |
+
- samsum
|
10 |
+
license:
|
11 |
+
datasets:
|
12 |
+
- samsum
|
13 |
+
metrics:
|
14 |
+
- rouge
|
15 |
+
---
|
16 |
+
|
17 |
+
# Samsum Pegasus (Reddit/TIFU) for conversational summaries
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
Pegasus (Reddit/TIFU) for conversational summaries trained on the samsum dataset!
|
22 |
+
|
23 |
+
## Training data
|
24 |
+
|
25 |
+
The data is the [samsum](https://huggingface.co/datasets/samsum) dataset for conversional summaries.
|
26 |
+
|
27 |
+
The initial weigths were from the [google/pegasus-reddit_tifu](https://huggingface.co/google/pegasus-reddit_tifu). The hypothesis being that it would help the convergence on the samsum dataset to have weights trained on a larger summarization dataset first like the Reddit TIFU using casual language.
|
28 |
+
|
29 |
+
## Training procedure
|
30 |
+
|
31 |
+
Used the _example/seq2seq/run_summarization.py_ script from the transformers source _4.5.0dev0_.
|
32 |
+
|
33 |
+
n_epochs: 3,\
|
34 |
+
batch_size: 8, \
|
35 |
+
max_source_length: 256,\
|
36 |
+
max_target_length: 128
|
37 |
+
|
38 |
+
## Eval results
|
39 |
+
|
40 |
+
eval_gen_len: 35.9939,\
|
41 |
+
eval_loss: 1.4284523725509644,\
|
42 |
+
eval_rouge1: 46.5613,\
|
43 |
+
eval_rouge2: 23.6137,\
|
44 |
+
eval_rougeL: 37.2397,\
|
45 |
+
eval_rougeLsum: 42.7126,\
|
46 |
+
eval_samples_per_second: 4.302
|