File size: 1,602 Bytes
aaa5338 c73b156 aaa5338 a0e2950 aaa5338 082cbcd aaa5338 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
language:
- en
- es
base_model: onnx-community/yolov10b
---
# Counter Strike 2 players detector
### Supported Labels
[ "none", "ct_body", "ct_head", "t_body", "t_head" ]
### models
YOLOv10b
## How to use
```
from ultralytics import YOLO
# Load a pretrained YOLO model
model = YOLO(r'weights\yolov10b_cs2.pt')
# Run inference on 'image.png' with arguments
model.predict(
'image.png',
save=True,
device=0
)
```
# Labels
![labels.jpg](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/C8USpCXU6KN8VQ2vjub_Q.jpeg)
# Results
![results.png](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/X9ZL01yd9UIo-u4sYnHN8.png)
# Predict
![train_batch0.jpg](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/gZQHxDe4hYYw8oz3NgNnv.jpeg)
```
YOLOv10b summary (fused): 383 layers, 20,418,862 parameters, 0 gradients, 98.0 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|ββββββββββ| 3/3 [00:02<00:00, 1.44it/s]
all 90 215 0.908 0.757 0.85 0.635
ct_body 41 45 0.914 0.911 0.953 0.819
ct_head 43 47 0.909 0.639 0.735 0.465
t_body 54 60 0.932 0.921 0.964 0.781
t_head 56 63 0.877 0.556 0.748 0.476
```
# others models YOLOv10s
https://huggingface.co/ChitoParedes/cs2-yolov10s |