File size: 5,560 Bytes
c1052e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---

language: en
license: apache-2.0
---


# Shears Model Card: shears-llama-7b-50-commonsense-heuristic

The heuristic subnetwork discovered from the [super-network](https://huggingface.co/IntelLabs/shears-llama-7b-50-commonsense-super) fine-tuned on LLaMA-7B with some commonsense reasoning datasets using Shears.

## Model Details

### Information

- **Model name:** shears-llama-7b-50-commonsense-heuristic
- **Base model:** [LLaMA-7b](https://huggingface.co/yahma/llama-7b-hf)
- **Sparsity:** 50%
- **Domain:** Commonsense
- **Subnetwork version:** Heuristic
- **NNCF Configuration:** [nncf_shears_llama_7b_sparsity50.json](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears/nncf_config/unified_commonsense/nncf_shears_llama_7b_sparsity50.json)

### Adapter Configuration

- **LoRA rank:** 32
- **LoRA alpha:** 64
- **LoRA target modules:** q_proj, k_proj, v_proj, up_proj, gate_proj, down_proj
- **LoRA rank search space:** [32, 24, 16] (for each LoRA module)

### Training Hyperparameters

- **Batch size:** 16
- **Learning rate:** 3e-4
- **Epoch:** 3

### Training Data

Unified commonsense reasoning dataset: [commonsense_170k.json](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/commonsense_170k.json).

### Evaluation Data
[BoolQ](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/boolq/test.json), [PIQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/piqa/test.json), [SIQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/social_i_qa/test.json), [HellaSwag](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/hellaswag/test.json), [WinoGrande](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/winogrande/test.json), [ARC-e](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/ARC-Easy/test.json), [ARC-c](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/ARC-Challenge/test.json), [OBQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/openbookqa/test.json).

## How to use

Use our modified PEFT library (apply [patch](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears/patches/peft-modifications-for-shears-inference-usage.patch)):
```bash

git clone https://github.com/huggingface/peft.git

pushd peft && git checkout v0.5.0 && git apply --ignore-space-change --ignore-whitespace peft-modifications-for-shears-inference-usage.patch && pip install -e . && popd

```

```python

import torch

from peft import PeftModel

from transformers import AutoModelForCausalLM

from transformers import AutoTokenizer



def generate_prompt(instruction):

    return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. 



                    ### Instruction:

                    {instruction}



                    ### Response:

                    """



base_model_path = "shears-llama-7b-50-commonsense-heuristic/base_model"

adapter_model_path = "shears-llama-7b-50-commonsense-heuristic/adapter_model"

base_model = AutoModelForCausalLM.from_pretrained(base_model_path)

model = PeftModel.from_pretrained(base_model, adapter_model_path)

model.eval()



non_zero_params = sum([(param.data != 0).sum().item() for _, param in model.named_parameters()])

print(f"Number of all non-zero parameters: {non_zero_params}")



tokenizer = AutoTokenizer.from_pretrained(base_model_path)

tokenizer.pad_token_id = 0



instruction = "Please choose the correct answer to the question: A cactus stem is used to store\n\nAnswer1: fruit "

        "Answer2: liquid Answer3: food Answer4: spines\n\nAnswer format: answer1/answer2/answer3/answer4"

prompt = generate_prompt(instruction)

inputs = tokenizer(prompt, return_tensors="pt")

input_ids = inputs["input_ids"].to(model.device)

with torch.no_grad():

    generation_output = model.generate(

        input_ids=input_ids,

        return_dict_in_generate=True,

        output_scores=True,

        max_new_tokens=256,

        use_cache=True,

        num_beams=4,

    )

  s = generation_output.sequences[0]

  output = tokenizer.decode(s)

print(output)



```

## Evaluation Results

| Model                | Sparsity  | BoolQ   | PIQA   | SIQA   | HellaSwag  | WinoG  | ARC-e  | ARC-c   | OBQA   | Average  |
|----------------------|-----------|---------|--------|--------|------------|--------|--------|---------|--------|----------|
| ChatGPT              | -         | 73.1    | 85.4   | 68.5   | 78.5       | 66.1   | 89.8   | 79.9    | 74.8   | 77.0     |
| LLaMA-7B-LoRA        | -         | 68.9    | 80.7   | 77.4   | 78.1       | 78.8   | 77.8   | 61.3    | 74.8   | 74.7     |
| [**LLaMA-7B-Shears**](https://huggingface.co/IntelLabs/shears-llama-7b-50-commonsense-heuristic)    | **50%**   | 67.3    | 79.1   | 77.5   | 73.3       | 77.7   | 74.4   | 57.9    | 72.8   | 72.5     |

## Model Sources

- **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears)
- **Paper:** [Shears: Unstructured Sparsity with Neural Low-rank Adapter Search]()

## Citation

```bash

@article{munoz2024shears,

  title = {Shears: Unstructured Sparsity with Neural Low-rank Adapter Search},

  author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},

  journal={},

  year={2024}

}

```

## License

Apache-2.0