jostyposty
commited on
Commit
·
21c3779
1
Parent(s):
f88882e
docs: add usage info
Browse files
README.md
CHANGED
@@ -72,9 +72,26 @@ Perhaps we should average over more environments? Wouldn't this give a result le
|
|
72 |
## Usage (with Stable-baselines3)
|
73 |
|
74 |
```python
|
|
|
75 |
from huggingface_sb3 import load_from_hub
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
```
|
79 |
|
80 |
|
|
|
72 |
## Usage (with Stable-baselines3)
|
73 |
|
74 |
```python
|
75 |
+
import gymnasium as gym
|
76 |
from huggingface_sb3 import load_from_hub
|
77 |
+
from stable_baselines3 import PPO
|
78 |
+
from stable_baselines3.common.evaluation import evaluate_policy
|
79 |
+
from stable_baselines3.common.monitor import Monitor
|
80 |
+
|
81 |
+
env_id = "LunarLander-v2"
|
82 |
+
|
83 |
+
model_fp = load_from_hub(
|
84 |
+
"jostyposty/drl-course-unit-01-lunar-lander-v2",
|
85 |
+
"ppo-LunarLander-v2_010_000_000_hf_defaults.zip",
|
86 |
+
)
|
87 |
+
|
88 |
+
model = PPO.load(model_fp, print_system_info=True)
|
89 |
+
eval_env = Monitor(gym.make(env_id))
|
90 |
+
mean_reward, std_reward = evaluate_policy(
|
91 |
+
model, eval_env, n_eval_episodes=10, deterministic=True
|
92 |
+
)
|
93 |
+
print(f"results: {mean_reward - std_reward:.2f}")
|
94 |
+
print(f"mean_reward: {mean_reward:.2f} +/- {std_reward}")
|
95 |
```
|
96 |
|
97 |
|
load.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gymnasium as gym
|
2 |
+
from huggingface_sb3 import load_from_hub
|
3 |
+
from stable_baselines3 import PPO
|
4 |
+
from stable_baselines3.common.evaluation import evaluate_policy
|
5 |
+
from stable_baselines3.common.monitor import Monitor
|
6 |
+
|
7 |
+
env_id = "LunarLander-v2"
|
8 |
+
|
9 |
+
model_fp = load_from_hub(
|
10 |
+
"jostyposty/drl-course-unit-01-lunar-lander-v2",
|
11 |
+
"ppo-LunarLander-v2_010_000_000_hf_defaults.zip",
|
12 |
+
)
|
13 |
+
|
14 |
+
model = PPO.load(model_fp, print_system_info=True)
|
15 |
+
eval_env = Monitor(gym.make(env_id))
|
16 |
+
mean_reward, std_reward = evaluate_policy(
|
17 |
+
model, eval_env, n_eval_episodes=10, deterministic=True
|
18 |
+
)
|
19 |
+
print(f"results: {mean_reward - std_reward:.2f}")
|
20 |
+
print(f"mean_reward: {mean_reward:.2f} +/- {std_reward}")
|